
!"#$%&'(#)*+%,&$%-./*#$"+0%#1%("+%&/23+%4+1(#21+0%5-'#16+'%#$$.+7
!"+%4&(+'#&*8%#1)*.0#16%&**%-2'(#21$%("+'+298%#$%-'2(+)(+0%/:%)2-:'#6"(;
&**%'#6"($%&'+%"+*0%+<)*.$#3+*:%/:%5-'#16+'%5)#+1)+%=%>.$#1+$$%?+0#&7

!"+%4&(+'#&*%#$%92'%-+'$21&*%.$+%21*:;
)244+')#&*%.$+%#$%12(%-+'4#((+07

@1&.("2'#A+0%'+-'20.)(#218%('&1$9+'%&10B2'%.$+
4&:%/+%&%3#2*&(#21%29%)'#4#1&*%&$%,+**%&$%)#3#*%*&,7

ISSN 0947-3602, Volume 15, Number 1



SPECIAL ISSUE - SECURITY REQUIREMENTS ENGINEERING

A comparison of security requirements engineering methods

Benjamin Fabian • Seda Gürses • Maritta Heisel •

Thomas Santen • Holger Schmidt

Received: 30 October 2008 /Accepted: 4 November 2009 / Published online: 26 November 2009
! Springer-Verlag London Limited 2009

Abstract This paper presents a conceptual framework for
security engineering, with a strong focus on security

requirements elicitation and analysis. This conceptual

framework establishes a clear-cut vocabulary and makes
explicit the interrelations between the different concepts and

notions used in security engineering. Further, we apply our

conceptual framework to compare and evaluate current
security requirements engineering approaches, such as the

Common Criteria, Secure Tropos, SREP, MSRA, as well as

methods based on UML and problem frames. We review
these methods and assess them according to different crite-

ria, such as the general approach and scope of the method, its

validation, and quality assurance capabilities. Finally, we
discuss how these methods are related to the conceptual

framework and to one another.

Keywords Security requirement !
Security requirement engineering ! Comparison !
Framework for security requirement engineering

1 Introduction

The long-standing credo of requirements engineering

reads: ‘‘If you don’t know what you want, it’s hard to do it
right.’’ This statement has particular significance for

security requirements, because unless we know what to

secure, against whom, and to what extent, it is obviously
very hard to construct a secure system or to make a sub-

stantial statement about its security.

Today, the established way for describing security
requirements, as reflected for example in the Common Cri-

teria [1], an international standard to achieve comparability

of independent IT security evaluations, starts with a
description of the functional requirements, the system

architecture, and its working environment. It then continues

with a threat analysis that describes envisaged threats, pos-
sibly followed by an evaluation of the severity of threats

through a risk analysis and ends with the definition of a
security policy.

This view on security requirements gives rise to the

conjecture that a proper security requirements elicitation is
not part of the best practice, today. We present two further

observations supporting this judgment. The first observa-

tion concerns the current process of establishing a security
policy, which is supposed to document security require-

ments. The security policy is derived from a threat analysis

whose subject necessarily is a structural description—an
architecture or a design—of the technical system to be

built. Without information about the intended technical

solution, which will implement the functional requirements,

B. Fabian
Institute of Information Systems, Humboldt-Universität zu
Berlin, Berlin, Germany
e-mail: bfabian@wiwi.hu-berlin.de

S. Gürses
ESAT/COSIC, K.U. Leuven, Leuven-Heverlee, Belgium
e-mail: seda@esat.kuleuven.be

M. Heisel ! H. Schmidt (&)
Software Engineering, University of Duisburg-Essen,
Duisburg, Germany
e-mail: holger.schmidt@uni-duisburg-essen.de

M. Heisel
e-mail: maritta.heisel@uni-duisburg-essen.de

T. Santen
European Microsoft Innovation Center, Aachen, Germany
e-mail: thomas.santen@microsoft.com

123

Requirements Eng (2010) 15:7–40

DOI 10.1007/s00766-009-0092-x
 Author's personal copy 



there is no handle for a threat analysis to identify possible

targets of an attack. Thus, the security policy logically relies
on the design of the system.

The second observation concerns the content and role of

a security policy, which apparently has flavors of require-
ments and design to it:

• ‘‘A security policy is a statement of what is, and what is
not, allowed’’ [2, p. 9];

• ‘‘for us, security boils down to enforcing a policy that

describes rules for accessing resources’’ [3, p. 14];
• ‘‘the security policy of a system or an organizational

unit fixes the set of technical and organizational rules,

rules of conduct, responsibilities, and roles, as well
as measures to achieve the desired protection goals’’

[4, Def. 1.14, in German]; but also:

• ‘‘based on the risk analysis, the security requirements of
the system to be built need to be derived and the

security policy needs to be fixed’’ [4, p. 205, in
German].

• ‘‘security policy is a [...] policy that mandates system-

specific [...] criteria for security [...]’’ [5, p. 34]

In the terminology of the Common Criteria, a security

policy refers to organizational requirements restricting the

environment of the technical system. The security
requirements are documented in the security objectives,
which ‘‘counter the identified threats and address identified

organisational security policies and assumptions’’ [1, Part
1, p. 29], and the IT security requirements, which ‘‘are the

refinement of the security objectives into a set of security

requirements for the TOE [Target of Evaluation] and
security requirements for the environment which, if met,

will ensure that the TOE can meet its security objectives’’

[1, Part 1, p. 29].
In those views, security requirements are consequences

of threats to the system, which can only be derived from

the design of the system. But what makes a threat a threat?
There must be an adversary, i.e. someone or something

who threatens, and something the threat is directed at—the

asset, which is a piece of information or a resource. There
also must be someone who values that information or

resource and wants it to be protected: the security stake-
holder. But most importantly, the security goal that the

stakeholder has with respect to the asset must be described

in detail. Just to state that the confidentiality, integrity, or
availability of the information or resource must be pro-

tected is as useful a ‘‘requirement’’ as the often cited pro-

totype of a would-be non-functional requirement: ‘‘The
system shall have a simple and comprehensible architec-

ture; its usage must be intuitive’’ [6, p. 274, in German].

Those ‘‘requirements’’ are not verifiable. It is impossible to
set up criteria under which a system meets those require-

ments, because they lack information and are imprecise.

Furthermore, the Common Criteria, and most other

suggestions for a security requirements process, identify
the stakeholder with the owner of the asset and assign the

responsibility to protect the asset to its owner. As a result,

the owner of the asset must also be the owner of the IT
system. How could he or she otherwise assume responsi-

bility for protecting the asset?

But nowadays, the world is not as simple as that: in
civil systems, in which we are interested, there are many

more stakeholders who have an interest in an asset than
just the owner of the IT system. More often than not,

stakeholders have conflicting interests with respect to

assets. The paradigm of multilateral security [7]
acknowledges this fact. Multilateral security contradicts

the traditional view, which assumes that there is a

‘‘trusted tribe’’ who has a homogeneous set of security
requirements against the rest of the world. But this tra-

ditional assumption still heavily influences common

approaches toward security engineering.
To take multilateral security seriously in security

requirements engineering (SRE), a requirements engi-

neering process must support engineers in identifying
security goals of the security stakeholders, and in resolving

conflicts among them—and in the reconciliation of security

goals and other, notably functional, requirements. This
process must establish a coherent set of security require-

ments for the entire system, which is complete and con-

sistent within itself and with the other kinds of
requirements that are relevant for the system. All this must

be done before the design of the system is fixed, because

the security requirements have an influence on the func-
tional requirements, which in turn (hopefully) determine

the design of the system. Only after all kinds of require-

ments have been fixed, threats against assets can be iden-
tified, and countermeasures be designed.

Having thus motivated the need for an explicit

requirements engineering process for security, this paper
contains two contributions. First, we establish a concep-

tual framework for security requirements engineering in

Sect. 2, followed by Sect. 3 on related work. This con-
ceptual framework contains all notions we deem relevant

for SRE, as well as their interrelationships. Second, in

Sects. 4–9, we give descriptions of currently available
methods for SRE and relate these methods to our con-

ceptual framework. However, not only currently available

methods can be assessed and compared using our
framework but also helps to classify newly developed

approaches to SRE. Already today, there is a wide variety

of methods covering different aspects of SRE (see Sect.
10). However, important aspects of SRE deserve further

research, especially those concerning a multilateral view

and conflict resolution. These issues are discussed in the
final section.

8 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



2 Conceptual framework

This section introduces a conceptual framework for secu-

rity requirements engineering. This conceptual framework

(CF) is not an attempt to suggest a universal method that
composes existing SRE approaches. In contrast, it

describes the central concepts of SRE and their

relationships.
The CF should serve as a guideline for comparing dif-

ferent SRE methods, and is itself the result of an iterative

process. It started out from reconciling Zave and Jackson’s
influential terminology [8] with basic concepts from

security engineering. Then, we conducted a broader survey

on SRE methods (see Sect. 3 for a description of the lit-
erature survey), and refined the CF iteratively to cover new

concepts encountered during this process. The SRE meth-

ods were analyzed again for the survey in Sects. 4–9, based
on the final version of the CF.

The utility of the framework lies in the uniform basis it

provides to elaborate the specifics of the SRE methods that
we investigate in the sections to follow. In particular,

mapping the diverse nomenclatures of different methods to

the concepts that the framework describes eases the com-
parison of the methods. Similar surveys of security

requirements engineering concepts do exist, which we

discuss in Sect. 3.
The scope of the survey was developed following a

literature review for which we queried google scholar1,
IEEE Explore2 and Citeseer3. We also consulted the pro-

grams of the International Requirements Engineering

Conference.4 After duplicates—i.e., articles with the same
title and similar content in different outlets—were

removed, we obtained 94 publications that matched our

‘‘security requirement’’ queries and in fact were related to
methods for SRE.

The distribution of the papers according to years are

given in Table 1. In order to limit the scope of the survey,
we included only those articles which had a fully devel-

oped method for security requirements engineering. We put

the emphasis on software engineering-oriented approaches

and did not consider articles that were solely about risk

management or security engineering. Last, we picked those
methods which were described and validated in multiple

papers. Hence, we did not consider one-shot articles on

security requirements engineering methods.
Figures 1 and 2 illustrate the relationships between the

foundational concepts of security requirements engineer-

ing. The concepts are denoted by boxes, which are related
by different kinds of lines. Larger boxes make up concept

groups. A simple line denotes a relationship between
concepts that belong to the same group. A solid arrow

denotes a logical dependency between concepts or concept

groups, pointing from an antecedent to a consequent.
Often, this dependency is a concretization, leading from a

more abstract to a more concrete concept. Note that the

term concretization constitutes a generalization of the
term operationalization. We use concretization to

describe a refinement step, i.e., a concept becomes more

detailed; a similar, but restricted sense is sometimes used in
requirements engineering for the term operationalization,

e.g., turning goals into an operation model (KAOS,

GBRAM), which can be verified through testing or formal
verification.

In contrast, there is also another established meaning of

operationalization (cf. [9–11]), i.e., to express the trans-
formation of non-functional requirements into functional

ones. Typically, in both cases, the operationalization of

requirements generates a specification (see Sect. 2.4) or the
initial system design elements. The term concretization in

our sense can be applied to every refinement step.

The solid arrows are labeled when they refer to addi-
tional activities in the given dependency such as recon-

ciliation or validation of the requirements. The dashed

arrow in Fig. 1 concerns the fulfillment of system
requirements by the conjunction of specification, assump-

tions, and facts, which is discussed in Sect. 2.4 below.

In general, none of the arrows should imply a temporal
order of requirements engineering activities. It is under-

stood that all activities to elaborate the different aspects of

security requirements take place throughout the entire
development process, though with differing intensities.

In the following, we describe the conceptual framework

depicted in Figs. 1 and 2 in detail.

2.1 A system is a machine in its environment

Using Zave’s and Jackson’s terminology [8], a system
consists of a machine in its environment. The machine is

the technical IT system that is to be constructed and that
communicates with its environment. Adopting a holistic

view, we consider security to be a system property. Secu-

rity can only be regarded as a characteristic of a system. It
is not a characteristic of the machine alone.

Table 1 Distribution of SRE papers to years

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

1 1 5 6 9 13 14 28 11 6

1 http://www.scholar.google.com
2 http://www.ieeexplore.ieee.org
3 http://www.citeseer.ist.psu.edu
4 http://www.re09.org

Requirements Eng (2010) 15:7–40 9

123

 Author's personal copy 

http://www.scholar.google.com
http://www.ieeexplore.ieee.org
http://www.citeseer.ist.psu.edu
http://www.re09.org


Note: An arrow primarily denotes a concretization and logical dependancy between concepts, 
not necessarily a temporal succession of actual process steps.

...

Security 
Requirement R1

Stakeholder S1

Information

Counter-
stakeholder

Security
Requirement R'1

Security
Requirement R'n

...
Security 

System Requirements

Specification
(Requirements the Machine can fulfill) Assumptions Facts

Design of the Machine

Implementation of the Machine
(incl. Deployment & Configuration)

Stakeholder View 1

Fulfillment

Assumptions
(Design Level)

(Organizational)
Procedures & 

Processes

Use

System Requirements (consistent)

Functional 
System 

Requirements

Non-functional 
System 

Requirements

Reconciliation of Interacting System Requirements

Security
Requirements

Functional
Requirements

Non-functional
Requirements

Functional 
Requirements

Non-functional 
Requirements

Reconciliation between Stakeholders

Asset
Security 
Goals

Security 
Requirement Rn

Stakeholder Sn

Information

Counter-
stakeholder

Stakeholder View n

Asset
Security 
Goals

Reconciliation between Stakeholders

Functional Goals
Non-functional 

Goals

...Stakeholder View 1

Stakeholder View n

Stakeholder View 1 ...

AND

Stakeholder View n

Circumstances Circumstances

Facts 
(Design Level)

Facts 
(Implementation 

Level)

Domain Knowledge

Fig. 1 Conceptual framework for SRE

10 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



2.2 Stakeholder views

A stakeholder is an individual, a group, or an organization

that has an interest in the system under construction. A

stakeholder view describes the requirements of a particular
stakeholder. The stakeholders may express different types
of requirements.

For the purpose of our paper, we assume an intuitive
distinction between functional (‘‘what the system does’’

[12, p. 483]) and non-functional requirements, ‘‘global

requirements on its development or operational costs, per-
formance, reliability, maintainability, portability, robust-

ness and the like’’ [12 p. 483]. This intuitive dichotomy is

also part of established (rather practical) guidelines on the
subject [13, p. 119]. However, we have to acknowledge that

this distinction is heavily debated in the requirements

engineering community because of terminological and
conceptual difficulties (see [14] for a comparison of dif-

ferent interpretations), and new categories have been pro-

posed, see e.g. [14, 15]. We consider security requirements
to be a part of the non-functional-requirements.

The top row of Fig. 1 distinguishes security stakeholder

views from views concerned with functional requirements or
non-functional requirements other than security requirements.

Stakeholders can express security concerns at different

levels of detail. Therefore, we distinguish security goals

(abstract) from security requirements (more detailed)—
with the caveat that such a distinction is not readily

established in the requirements engineering community,

and probably cannot be made completely precise due to
vagueness of subjective intuitions and semantic intricacies

of natural languages. We give a working description of the

differences between security goals and security require-
ments in the following.

A stakeholder’s security goal expresses his or her

security concerns towards an asset. The Common Criteria
[1] define an asset as an ‘‘entity that the owner of the target

of evaluation places value upon’’. Similarly, ISO/IEC FDIS

17799:2005 [16] and ISO/IEC 13335-1:2004 [17] consider
‘‘anything that has value to the organization’’ an asset.

Thus, an asset is any entity that a stakeholder puts a value

upon with respect to security. We prefer this definition of
an asset over more technical ones that emphasize the value

of a technical system to its owner, such as the definition

used in NIST SP 800-26 [18], which considers a ‘‘major
application, general support system, high impact program,

physical plant, mission critical system, or a logically

related group of systems’’ an asset. During the security

Goal

Requirement

System 
Requirement

Assumption

Specification

Design Property

Implementation 
Property

Usage 
Property

Risk(Potential) Loss

Countermeasure

Security Property

Stakeholder

reduced
by

requires

mitigated by

suffers subject to

potentially
exploited by

violation of
implies

constitutes

Resource

object
of

Only applicable to 
"high-level" Security Properties

{

High

Low

Level of 
Security Property

Abstraction

Vulnerability

potentially 
violated by

Attacker

actually
initiated by

Threat

actually
exploited by

potentially
initiated by

Attack

Threat Agent
Counter-

Stakeholder

realizes

Fig. 2 Security concepts for SRE

Requirements Eng (2010) 15:7–40 11

123

 Author's personal copy 



requirements engineering process, assets will be concret-

ized by more detailed concepts, which we subsume under
the term resource, see Sect. 2.5.

Security goals are traditionally classified into integrity,
confidentiality, and availability goals. Very influential
examples are the following ISO/IEC 13335-1:2004

definitions:

• Integrity is the property of safeguarding the accuracy

and completeness of assets.

• Confidentiality is the property that information is not
made available or disclosed to unauthorized individu-

als, entities, or processes.

• Availability is the property of being accessible and
usable upon demand by an authorized entity.

This so-called CIA triad is sometimes extended by
concepts such as accountability, non-repudiation, and

authentication. In this paper, however, we subsume these

further concepts under those of the CIA triad to streamline
our presentation. For example, accountability and non-

repudiation can be classified as integrity goals, authenti-

cation as a design mechanism to achieve confidentiality or
integrity, and anonymity or unobservability may be sub-

sumed under confidentiality goals. We emphasize that our

conceptual framework could also be applied to different
taxonomies and hierarchies of security goals.

Independently of their taxonomy, security goals are

defined as very general statements about the security of an
asset. For example, the customers of a bank may have the

confidentiality goal that their financial situation remains

confidential. The public, represented by a government
agency, may have the integrity goal that electronic finan-

cial transactions do not change the total amount of circu-

lating money. Security goals are therefore too vague to be
considered verifiable requirements.

Security requirements capture security goals in more

detail. A security requirement refines one or more security
goals. It refers to a particular piece of information or ser-

vice that explicates the meaning of the asset it concretizes

in the context of the system under construction. This
information itself does in general not directly correspond to

data that is processed by the machine, e.g., the entries in a
database. In turn, it describes a more abstract concept,

which the more detailed data will concretize. Concretiza-

tion of goals to requirements to specifications is accom-
plished in parallel to the concretization of resources, for

example, from assets to information to data.

A security requirement also indicates the counter-
stakeholder against whom the requirement is directed. This

is particularly important for confidentiality requirements,

where the counter-stakeholder is the party who must not
get to know the information to which the requirement

refers. A counter-stakeholder is not necessarily an

adversary who tries to attack the system. The concept of an

adversary only becomes relevant in the context of a threat
analysis, which we discuss in Sect. 2.5.

A third important aspect of a security requirement

concerns the circumstances in which it must be satisfied.
These describe application conditions of functionality,

temporal, or spatial aspects, the social relationships

between stakeholders—in general, the ‘‘context’’ to which
the requirement refers.5

In the banking example, a customer’s security require-
ment states that the exact balance of his or her account

must not become known to arbitrary bank employees or

other customers. Here, the information is the account bal-
ance, and the counter-stakeholders are bank employees and

other customers. The circumstances describe, e.g., that an

authorized bank employee who needs to know the balance
for a specific purpose may nevertheless get to know it, or

that the balance must be kept confidential for at least

50 years after the account has been closed.

2.3 System requirements

Multiple requirements are interdependent and interact with

one another. These interactions may be positive, negative

(conflicts), or result from conflicts during implementation
[20]. Analysis and management of requirements interac-

tions is a necessary and fruitful part of requirements

engineering [20]. Although analysis of positive interactions
may be useful in prioritizing requirements or reiterations in

requirements analysis, focus in requirements interaction

has been on negative interaction, or simply requirements
conflicts.

Conflicts may arise for a number of reasons at different

stages of requirements engineering. The views of different
stakeholders are in general inconsistent, e.g., because they

have different and contradicting requirements. Inconsistent

requirements are the starting point for deriving useful
information that might otherwise go unnoticed, cf. [21] (as

cited by [20]). Inconsistencies resulting from differing

views have been addressed by view-point-oriented
requirements engineering methods [22, 23]. Conflict of

interest, the case in which an individual’s personal interest

conflicts with the requirements assigned to their roles is
addressed by Giorgini et al. [24].

5 We propose to avoid the use of ‘‘context’’, because it is an
overloaded term within software engineering. Often in requirements
engineering context is used to refer to the specific environment in
which the machine is situated [19]. Context has also increasingly
become a concept in newer branches of computer science. One
example being ‘‘context-aware systems’’ modeling the properties of a
given context, which may or may not be the physical environment.
Context is then used to adapt the machine or the environment to the
users’ needs.

12 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



Even when the differences between stakeholders and the

roles that are assigned to them are consolidated, the satis-
faction of one requirement can aid or detract from the

satisfaction of another, and the environment can increase or

reduce requirement satisfaction. These kinds of conflicts
have been addressed in goal-oriented requirements analysis

[25] and in non-functional requirements engineering (NFR)

[12].
In the security community, the integration of stake-

holder views has lead to the paradigm of multilateral
security [7], which acknowledges that different stake-

holders have different, but equally justified security goals.

Similarly, different types of requirements may interact.
Therefore, it is necessary to consider all views for each

type of requirement, i.e., functional and non-functional

requirements, to come up with a consistent set of system
requirements, shown at the center of Fig. 1. The figure

shows two steps of requirements reconciliation: in the first,

the stakeholder views for requirements of the same classes
are reconciled. In particular, the security stakeholder views

are reconciled to a set of security system requirements. In
the second step, interacting requirements of different types
are reconciled to come up with a consistent set of system
requirements that contains requirements of all types.

The reconciliation process may require stakeholders to
compromise on their initial requirements. For example, the

requirement of keeping the balance of a bank account

confidential against all other customers contradicts the fact
that a bank transfer (which would be described in the

functional requirements) necessarily leaks information

about the account of which the transfered amount is
withdrawn. Therefore, the customer may relax the confi-

dentiality requirement and be content with restricting the

precision with which other customers can estimate the
balance.

2.4 Specification and domain knowledge

The system requirements describe properties the system

must have after the machine has been built. They do not
prescribe how the machine or the environment contribute

to achieve such a system. Therefore, the system require-

ments are refined into a machine specification, as well as
domain knowledge, consisting of facts and assumptions
about the environment [8, 26–28]. Conjoined, those three

sets of properties (specification, facts, assumptions) must
be sufficient to satisfy the system requirements, indicated

by the dashed arrow in Fig. 1.

The specification constrains the machine to be built.
The facts and assumptions describe or constrain the

environment of the machine. This distinction is particu-

larly important for security requirements. A machine
usually cannot satisfy security requirements

unconditionally. It can provide security mechanisms that

contribute to system security, but cannot enforce system
security on its own.

In the example, the specification will prescribe access

control mechanisms to prevent unauthorized access to bank
account information. However, access control can only

contribute to achieving the requirement that other cus-

tomers do not get to know the balance of an account. It is
furthermore necessary to know that there is no physical

access to the servers of the bank (a fact), and to assume that
no customer can collect information about all bank trans-

fers related to a particular account and thereby restrict the

probable balance of that account beyond the limits that the
security requirement permits.

At the design level, not only the design of the machine

must refine the specification, but also additional facts and
assumptions need to be considered. Here, trust is relevant.

Often, stakeholders cannot enforce their requirements

alone but need to delegate tasks to other actors in the
environment of the machine. Consequently, they need to

trust those actors to accomplish the tasks in a secure way.

For example, if the machine design stipulates that admin-
istrators can override access control mechanisms, then the

ordinary users necessarily need to trust system adminis-

trators to only use their rights securely.
At the implementation level, assumptions are refined to

organizational procedures and processes that prescribe how

the implemented machine must be used in order to achieve
security.

2.5 Threat analysis concepts and the concretization
process

Figure 1 describes security requirements engineering pri-
marily from a software engineering perspective. On the

other hand, the right-hand side of Fig. 2 presents a com-

plementary view, emphasizing concepts from security
engineering and management, such as threats and risks, see

for example, the Common Criteria [1] and Fig. 12. Those

threat or risk analysis concepts are used by some of the
SRE approaches discussed later in this paper (see Sect. 8).

From a threat analysis perspective, a stakeholder

requires a security property to hold for a resource, whose
violation implies a potential loss to the stakeholder. This

violation can be caused by a vulnerability, which could

potentially be exploited by a threat initiated by a threat
agent. An attack actually exploits a vulnerability, and is

initiated by an attacker. Attackers are a subset of threat

agents (often also called adversaries), which in turn con-
stitute a subset of the counter-stakeholders discussed in

Sect. 2.2. The potential loss constitutes a risk for the

stakeholder, but can be reduced by countermeasures miti-
gating the vulnerability.

Requirements Eng (2010) 15:7–40 13

123

 Author's personal copy 



How does this perspective relate to the concretization

process of SRE depicted in Fig. 1? The main insight refers
to the nature of the security property, which can embody

various abstraction levels. The left-hand side of Fig. 2

shows examples of security properties, ordered by their
level of abstraction. Corresponding to the concretization

process described in Fig. 1, the highly abstract stakeholder

goals become more concrete during the requirements
engineering process. A goal is a security property of an

asset, in which the stakeholder is interested. Goals get more
detailed by transforming them into requirements, and from

there to system requirements. Those get more concrete by

the conjunction of specification and assumptions (sup-
ported by facts). A security specification is a property that

the machine must satisfy in order to achieve a security

requirement. An assumption is a security property
addressing the same level of abstraction as a specification.

A fact itself, however, is not a security property, because

facts are true without any precondition (otherwise, they
would be assumptions). This process leads to design,

implementation, and usage properties that are the most

concrete representations of the abstract goals.
At the same time, the resource, to which the security

property refers, becomes less abstract during the process.

As Fig. 1 shows, the resource of a security goal is an asset,
and the resource of a security requirement is a piece of

information. The resource of a low-level property such as a

design property may be a data record or a communication
protocol between components of the machine.

An important point is that all abstraction levels of

security properties can be subject to threats imposed by
threat agents. This allows for an integration of iterative

threat analysis processes into the likewise iterative pro-

cesses of requirements engineering. At multiple concreti-
zation levels, threat analysis processes could produce

insights for the requirements engineering process, for

example, if countermeasures are integrated into a new
version of functional requirements.

However, the consequences of threats, e.g. a potential

loss, and the effects of countermeasures on the security of
the system cannot be evaluated uniformly for all abstraction

levels of security properties. For example, a stakeholder can

assign a potential loss to a security goal or a security
requirement, and thus (quantitatively or qualitatively)

express the value of that security property. To assign a loss

to security properties at a high level of abstraction can be
useful to justify compromises when reconciling conflicting

requirements. However, it is hardly possible to directly

assign a loss to a security property of the machine or the
environment at a lower level of abstraction. The conse-

quences of violating such a property for the security of the

system as a whole cannot be determined without knowing to
what high-level security properties a low-level property

contributes. Therefore, the threats and countermeasures for

low-level properties cannot be evaluated per se, but need to
be related to the corresponding high-level properties. In

general, the exact relationships between security properties

at different levels of abstraction must be maintained; it
should also be established how low-level threats affect

higher-level security goals or requirements [29].

3 Related work

Our conceptual framework is comparable to the work of

Moffett et al. [30] that defines core security requirements
artifacts. Their framework is intended to eventually derive

an SRE process rather then to facilitate the comparison of

different security requirements engineering methods.
Hence, the authors use certain definitions of concepts while

deliberately leaving others out, and define dependencies

such that concrete process steps can be stabilized.
In the framework of Moffet et al., an artefact is defined

as any object created as part of the process of system

development: starting with documents and prototypes all
the way down to the working system itself. A distinction is

made between core and supportive artifacts. Core

requirements engineering artifacts consist of goals,
requirements, and the components and structure of the

system, while core security requirements engineering arti-

facts consist of assets, threats, and control principles.
Our understanding of functional and security goals

overlaps with that of Moffet et al. In comparison, the

definition of security requirements as constraints is too
restricted for our purpose: our objective is to keep the

conceptual framework general enough to account for other

approaches and hence enable comparison between the
different methods.

The control principles mentioned by the authors, e.g.,

separation of duties or principle of least privilege, we
interpret as design principles rather than as core security

requirements artifacts. We do have a comparable ‘‘(orga-

nizational) procedures and processes’’ concept (see Fig. 1)
to accommodate some of the control principles. We agree

that considering organizational principles from the begin-

ning may be useful, as suggested by the authors and also by
[11, 31], if an organizational setting is the starting point of

analysis.

The conceptual framework is also similar to the taxonomy
provided by Firesmith [5], which is based on [30]. We use

this taxonomy as a comparative model for the main security

concepts in our conceptual framework. Note that [5] actually
concludes with an information model of defensibility engi-

neering—including safety, security, and survivability qual-

ity factors. None of the methodologies that we study conflate
these three fields. Our focus hence remains on security

14 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



engineering, and we, therefore, compare our conceptual

framework to the ‘‘information model for security engi-
neering’’ given in the same paper. In our conceptual frame-

work, other ‘‘quality factors’’ besides security are subsumed

under the title other ‘‘non-functional requirements’’.We note
this as an important area to explore in future research.

The conceptual framework is different from the taxon-

omy in [5], since it is not only about static relationships, but
also includes references to reconciliation or validation

activities that need to be executed to move from one concept
to the other. At the same time, since the conceptual frame-

work is not a universal process model for SRE, the activities

can occur in different orders throughout the development
process. The emphasized activities and the order in which

they are executed is likely to depend on the emphasis of the

chosenmethod on security engineering (driven by assets and
risks) or software engineering (driven by stakeholder needs

and stepwise development). The dependencies can also be

traversed in different directions, e.g. in the example of val-
idating the fulfillment of system requirements. Further, the

concepts we study may change depending on the abstraction

level, and hence are not easily mapped to relationships on
one level of abstraction as is the case with [5]. The impor-

tance of abstraction levels is discussed in Sect. 2.5.

All concepts in the information model of security
engineering have a correspondence in our conceptual

framework. Nonetheless, these are not always one-to-one

correspondences. In Table 2, we compare the concepts in
the ‘‘information model’’ and the concepts in our concep-

tual framework. If we have differing definitions for the

concepts these are mentioned in the table.
Our concepts stem from literature analysis of terminol-

ogy as used in different security standards, security

requirements engineering methods, and the occasional need
to emphasize the differences in meaning between our

concepts and existing security concepts. For example,
although the importance of the different views of the

stakeholders is mentioned in [5], the information models

never include stakeholders. People in the information
models only appear as those who may be subject to harm.

In our CF, we emphasize multilaterality and hence point to

the difficulty of determining what should count as an asset,
and of what value it is to whom.

Another comparable study emphasizes the need for an

alignment of security engineering concepts [32, 33]. The
authors’ objective is to align concepts in information sys-

tems risk management methods, to analyze which concepts

are supported by existing security requirements engineer-
ing methods, and to define a language with solid concep-

tual foundations based on the prior activities. Similar to [5],

the language used in [33] to model core security concepts is
based on UML class diagrams and models the concepts at a

Table 2 Comparison of concepts in the information model for security engineering [5] and our CF

System The system in [5] refers to the machine and the people that interact with the machine.
In the CF, the system is the machine and the environment. It is less machine centric.
In the case of risk and threat analysis, we talk of system security properties that
are breached, rather than the states of the system.

Environment The environment in [5] is the physical environment, which may be subject to harm.
In the CF it is where the machine is embedded and plays an important role
in the definition of the functionality and security requirements of the system.

Asset ... is an asset in CF. However, we take a multilateral approach and do not consider assets only
to be threatened by malicious attacks. In order to distinguish assets in the different abstraction levels,
generically we call it resource.

Security goal In the CF, security goals are called the same and refer to the security goals defined towards
the assets important to the different stakeholders.

Security policy In [5], security policies mandate security criteria. We refer to a similar phenomena in a specification,
which mandates all the security requirements that need to be included in the design of the system.
Further, we assume that there are security policies defined in the organizational procedures
and processes, which mandate protection of security within the environment.

Security requirement Same definition

Threat Same definition

Attack Same definition

Attacker ... is in the CF called attacker in the case of actual exploitation, or threat agent
if the exploitation is potential. The concept of counter-stakeholder generalizes both concepts.

Harm ... is called a loss.

Security mechanism ... is called a countermeasure.

Property ... are subsumed under loss.

People

Service

Requirements Eng (2010) 15:7–40 15

123

 Author's personal copy 



fixed level of abstraction. It does not address different
levels of abstraction as necessary in a software engineering

approach. We include and extend the core security con-

cepts defined in [32, 33] in our conceptual framework.
In Table 3, we compare the concepts in the information

system security risk management domain model presented

in [32] and the concepts in our conceptual framework. If
we have differing definitions for the concepts, these are

mentioned in the table.

Further, a survey of SRE methods has also been pro-
vided in [34], but the review predominantly focuses on

methods for risk management and analyzes them with

respect to their compliance to the Common Criteria. In [35]
and [36], the authors provide two short surveys of security

requirements engineering methods, but the analysis in both

articles is limited in scope and in detail. In addition, they
lack a reference like the conceptual framework through

which detailed comparisons can be conducted.

Recently, an critique has been raised by Jureta et al. [15]
with respect to the terminology by Jackson and Zave that

states that the requirements problem amounts to finding the
specification and domain assumptions that suffice to satisfy

the requirements. The authors argue that this model does

not facilitate alternative articulations of domain assump-
tions, specifications and requirements, and does not

capacitate the stakeholders to make preferences between

these alternatives.
According to the core requirements engineering ontol-

ogy by Jureta et al. [15], functional requirements describe

what the system does, while non-functional requirements
how well the system does it (i.e., quality requirements).

Non-functional requirements are then divided into two:

those which provide measurable ‘‘objective’’ qualities and
structured quality values (quality constraints), and those

which provide subjective and unstructured or ill-defined

quality values (called softgoals). Softgoals are not satisfi-
able but ‘‘satisficable’’ by justifiably approximated quality

constraints.

The authors add that there will be multiple subsets of
domain assumptions and specifications that will fulfill the

requirements. In order to deal with these alternatives, they

suggest determining which of the goals and quality con-
straints are optional or mandatory. This dichotomous

classification can then be used to facilitate the negotiation

of stakeholder preferences between different solutions to
the problem.

Our description of the concretization process in Sect. 2.2

explicates some of the aspects of what the authors in [15]
call justified approximation e.g., refining information that a

goal refers to, stakeholders, counter-stakeholders, circum-

stances, etc. Section 2.5 relates how the different security
concepts like harm, risk, and threats apply at the different

levels of abstraction to these aspects. In contrast to the

authors, we do not assume that all non-functional goals will
only lead to approximating quality constraints, but may

also lead to additional or modified functional requirements,

as also described in [30] and [37].
In the following Sects. 4–9, we present the survey of

existingSREapproachesbasedonour conceptual framework.
We start with multilateral approaches, followed by UML-

based and goal-oriented methods, approaches using problem

frames, risk-oriented, and Common Criteria-based methods.
For each of the selected approaches, we describe the method,

its scope in terms of the system development tasks and

security goals it covers, the validation and quality assurance
aspects it entails, and the relation to our conceptual frame-
work concerning the nomenclature used by the methods.

4 Multilateral approaches

4.1 Multilateral security requirements analysis

(MSRA)

(1) Description: The objective of the Multilateral Security

Requirements Analysis (MSRA) method [38, 39] is to

Table 3 Comparison of concepts in the information system security risk management domain model [32] and our CF

Asset ... is an asset in CF. In contrast to the definition in the CF that involves multilaterality, the definition by Mayer only involves
malicious attacks. Mayer refers to an asset as a general concept similar to what is called resource in the CF. Concrete assets
are business assets (e.g., information, processes, skills) and information system assets (i.e., a part of the information system
that has value to the organization).

Security criterion ... is called a security goal.

Vulnerability Same definition

Threat Mayer defines a threat as a composition of a threat agent and an attack method. The latter represents the means used to carry
out a threat. Our CF does not explicitly mention attack methods. However, they are subsumed under the term threat.

Threat agent Same definition

Security
requirement

Mayer’s definition is similar to our definition with the difference that our definition does not (directly) refer to risk. In our CF,
risk is not considered on the low levels of abstraction, i.e., risk comes into play when the security property can be
considered on a level of abstraction higher than that of system requirements (cf. Sect. 2.5).

Control ... is called a countermeasure.

16 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



apply the principles of multilateral security [7] during the

requirements engineering phase of systems development.
This is done by analyzing security and privacy needs of all

the stakeholders of a system-to-be, identifying conflicts,

and consolidating the different stakeholder views. The
method borrows both from theories on multilateral security

and viewpoint-oriented requirements engineering.

In order to articulate the different security needs of the
stakeholders, MSRA users elaborate security requirements

from the perspectives of the different stakeholders with
respect to bundled functionalities of a system. Security

requirements result from the reconciliation of multilateral

security goals. Security goals are selected from a rich
taxonomy derived from the CIA triad, which also includes

properties such as accountability and pseudonymity etc.

Security goals, and later requirements, contain the attri-
butes stakeholders who have an interest in the requirement,

counter-stakeholders towards whom a requirement is sta-

ted, and a number of other attributes that are defined in the
following paragraphs.

A stakeholder is defined as any person or organization

that has an interest in the system-to-be. Therewith, the
elaboration of the security requirements is not limited to the

functional users of the system-to-be, the latter being refer-

red to as actors. Rather, a distinction is made that allows the
elaboration of both, those who have a stake in the system

security, and those who will be using the system.

The variant Confidentiality Requirements Elicitation
and Engineering (CREE) of MSRA [40] considers only

confidentiality requirements. Later work has focused on the

formalization of the confidentiality requirements in CREE
and the use of defeasible logic6 to analyze ambiguities and

conflicts [41]. Counter-stakeholders refer to those stake-

holders whom the security goals are directed at. These may
or may not be malicious attackers or actors of the system.

Further, MSRA works with an information model, the
elements of which are the objects of the different security
requirements. The information model is of a higher level of

abstraction than a data model, as would be necessary for a

functional specification of the system-to-be.
Additional attributes of a security requirement are: the

owner of the security requirement; the degree of agreement
among stakeholders towards the security requirement; the
goal of the requirement (in CREE this is only confidentiality

or consent); the information the requirement addresses; the

strictness, stating if the security requirement makes a state-
ment about the security of information that it is not explicitly

addressing; and the rationale, articulating why the infor-

mation needs to be secured. Further, temporal validity,

defining how long the security concern must be preserved, is

seen as an attribute, but is not handled in the tables.
An episode comprises system functionality that relates to

similar security interests of a single or a group of stake-

holder(s). They are useful for identifying conflicts between
the security goals. Several kinds of conflicts between security

goals can exist: for a single stakeholder, between the different

requirements she has towards multiple episodes; between the
different stakeholders of an episode; and between the

requirements of episodes regardless of stakeholders.
Once the conflicts and inconsistencies are addressed, the

security goals are said to be refined into security require-

ments. Further, additional conflicts may exist between
security requirements, functional requirements, and other

non-functional requirements. The method proposes ana-

lyzing conflicts carefully and solving them either during
requirements analysis, through design, or using negotiation

mechanisms at runtime.

The following are the main steps of the multilateral
security requirements analysis method, once an initial

functional requirements analysis for the main functional-

ities of the system is concluded:

1. Identify stakeholders: Stakeholders are all parties that

have functional, security, privacy, or information
interests in the system-to-be.

2. Identify episodes: Episodes are similar to scenarios,

but are of a lower granularity, identifying sets of
functionalities as would be meaningful to users.

Episodes are used to partition the security goals and

are later useful in identifying conflicts between
multiple security goals.

3. Elaborate security goals: Identify and describe the

security goals of the different security stakeholders for
each of the episodes.

4. Identify facts and assumptions: These are the proper-

ties of the environment that are relevant for stating
security goals.

5. Refine stakeholder views on episodes: Elaborate the

stakeholder views taking facts, assumptions, and the
relationships between episodes into account.

6. Reconcile security goals: Identify conflicts between

security goals, find compromises between conflicting
goals, and establish a consistent set of security system

requirements.

7. Reconcile security and functional requirements: Trade
functionality for security and vice versa in case of

conflicting functional and security requirements.

(2) Scope: MSRA is integrated into the requirements

analysis phase and can be applied as soon as the initial

functional requirements of the system are identified.
All CIA goals are considered, although the emphasis on

privacy has put the focus on confidentiality and integrity

6 A non-monotonic logic in which defeasible rules can be overridden
by others when certain conditions hold. For example, in the case of an
emergency, certain confidentiality rules can be overridden.

Requirements Eng (2010) 15:7–40 17

123

 Author's personal copy 



goals. MSRA puts an emphasis on multilateral security,

focusing on stakeholder views, the circumstances of secu-

rity requirements, and reconciliation of conflicting
requirements. MSRA uses UML models to capture epi-

sodes, the information model, as well as the functional and

security requirements. In CREE, tables are used to denote
the attributes of security requirements as shown by the

example in Table 4.

(3) Validation and quality assurance (QA): MSRA does
not provide explicit validation methods. It does not guaran-

tee completeness of security requirements, although multi-

lateral security is an attempt to define security and privacy
requirements in a system for all stakeholders, with the

intention of discovering requirements that from amonolithic

technical perspective could else have been missed.
Through the multilateral view to security, conflicts are a

central concern of the method. The method explicitly

addresses interactions among security requirements, as
well as between security and functional requirements. Later

formalization work with defeasible logic proposes auto-

mated analysis of the requirements for conflicts and
ambiguities. Non-functional requirements other than

security are not considered. The method is iterative, in the
sense that after the reconciliation of security goals into

security requirements, interactions are expected to affect

the functional requirements of the system, requiring a
review of the security requirements.

(4) Relationship to the conceptual framework: The

stakeholders and counter-stakeholders in MSRA corre-
spond to the same terminology in our conceptual frame-

work. The information model captures the information

associated with a security requirement in Fig. 1. Security
goals refer to goals as in the conceptual framework,

whereas security requirements refer to the security system

requirements. Episodes map to circumstances in the CF.
Facts and assumptions map one-to-one to the same CF

terminology.

4.2 Security quality requirements engineering

methodology (SQUARE)

(1) Description: SQUARE [42] is a comprehensive meth-

odology for security requirements engineering. Its aim is

to integrate security requirements engineering into soft-
ware development processes [43]. SQUARE stresses

applicability in real software development projects and

thus provides an organizational framework for carrying out

security requirements engineering activities. It is assumed
that SQUARE is carried out jointly by requirements engi-

neers and stakeholders. It consists of 9 steps:

1. Agree on definitions: This step serves to enable a clear

communication between requirements engineers and

stakeholders.
2. Identify security goals: Initially, the stakeholders will

state different security goals. In this step, the goals are

aligned, and conflicts are resolved.
3. Develop artifacts: The authors name the following

artifacts that should be collected: system architecture

diagram, use case scenarios/diagrams, misuse case
scenarios/diagrams (see Sect. 5.1), attack trees, and

standardized templates and forms. These artifacts form

the basis for the subsequent steps of the method.
4. Perform risk assessment: In this step, the vulnerabil-

ities and threats related to the system are identified, as

well as the likelihood that the threats will lead to
attacks. The authors propose to apply existing risk

assessment methods.

5. Select elicitation technique: The method selected in
this step will be applied in the next step to perform the

actual security requirements elicitation. Again,

SQUARE recommends to apply an existing technique
to be chosen for the project at hand.

6. Elicit security requirements: A crucial point in this

step is to ensure that the requirements are verifiable
and that they are not implementations or architectural

constraints instead of requirements.
7. Categorize requirements: The elicited requirements are

categorized (at least) according to the following

criteria: essential, non-essential, system-level, soft-
ware-level architectural constraint. Since the latter are

not considered as requirements, their existence indi-

cates that the previous steps should be executed again.
8. Prioritize requirements: It is assumed that not all

requirements can be implemented; hence, the most

important requirements must be identified.
9. Requirements inspection: In this last step, the require-

ments are checked for ambiguities, inconsistencies,

mistaken assumptions, and the like. Its result is the
final security requirements documents for the

stakeholders.

Table 4 Example requirements table in MSRA/CREE

Id Own. Degree agree. Goal Counter-stakeh. Strict. Info Context Ration.

E.1 Patient Unanim. Consent Clinician Strict PII New patient Admin/care

E.2 Patient Partial Confid. Govern. Non-strict PII Aggregate data Anon

18 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



(2) Scope: SQUARE is a comprehensive security

requirements engineering methodology that recommends to
make use of other techniques developed in the field, and

that covers all CIA goals.

(3) Validation and QA: Each step of SQUARE closes
with some exit criteria, which have to be fulfilled before

the next step is begun. Moreover, the last step is exclu-

sively dedicated to validating the requirements. However,
no formal validation is performed.

(4) Relation to conceptual framework: Although
SQUARE uses notions of our conceptual framework, they

are often used in a narrower sense. Stakeholders are iden-

tified with clients. It seems that ‘‘system-level require-
ments’’ correspond to requirements as defined in the

conceptual framework, whereas ‘‘software-level require-

ments’’ correspond to specifications. ‘‘System’’ seems to
mean the IT infrastructure in which the software to be

developed will operate. Hence, this term is also used in a

narrower sense than in the conceptual framework. Domain
knowledge is not mentioned explicitly. However, step 1 of

the method seems to be related to it. Also, the notions asset

and vulnerability are not mentioned. On the other hand, the
terms security goal, threat and risk are used in the same

way as in the conceptual framework.

5 UML-based approaches

In this section, we discuss approaches to security require-

ments engineering that make use of Unified Modeling

Language (UML) [44] notation.

5.1 Misuse cases

(1) Description: Sindre and Opdahl [45] extend the tradi-

tional use case approach to also consider misuse cases,

which represent behavior not wanted in the system to be
developed. Misuse cases are initiated by misusers. A use

case diagram (see Fig. 3) contains both, use cases and

actors (notated as named ellipses and named stick figures,
respectively), as well as misuse cases and misusers (notated

as graphically inverted use cases and actors).7

A use case is related to a misuse case using a directed
association. An association pointing from a misuse case to

a use case has the stereotype\\threaten[[. A use case

diagram can contain security use cases, which are special
use cases. An association pointing from a security use case

to a misuse case has the stereotype\\mitigate[[. It is

stated that ordinary use cases represent requirements,

security cases represent security requirements, and misuse
cases represent security threats. Since use case diagrams

only give an overview of the system functionality, the

essence of the contained uses cases is captured in an
associated textual description. This textual description is

based on a template to be filled out by an analyst. Sindre

and Opdahl extend the template, making it suitable for
describing misuse cases, supporting detailed elicitation and

analysis of security threats. Furthermore, they present an

iterative method based on common risk and threat analysis:

1. Identify critical assets in the system.

2. Define security goals for each asset.
3. Identify threats for each security goal by identifying

stakeholders that may intentionally harm the system or

its environment. Identify sequences of actions that may
result in intentional harm.

4. Identify and analyze risks for the threats (using

standard techniques).
5. Define security requirements for the threats to match

risks and protection costs.

Applying misuse cases results in a use case diagram
including use cases, security uses cases, and misuse cases.

The approach neither considers a formal foundation nor an

attacker model.
(2) Scope: Misuse cases are applicable to design a sys-

tem that covers different security needs. It is possible to

consider all three CIA goals. It incorporates common risk
and threat analysis techniques.

(3) Validation and QA: The interaction between func-
tional and security needs is considered in terms of linked use

cases and security use cases in a use case diagram. The

approach does not consider elicitation of requirements (in the
sense of security requirements in the conceptual framework),

Fig. 3 Use case diagram containing misusers and misuse cases (taken
from [45])

7 The definition of mal-activity diagrams [46] is based on a similar
idea. In this recent work, malicious activities and actors are added to
UML activity diagrams in order to model potential attacks.

Requirements Eng (2010) 15:7–40 19

123

 Author's personal copy 



completeness of the set of requirements, validation, verifi-

cation, conflicting requirements, nor the interaction of
security and other non-functional requirements.

(4) Relation to conceptual framework: Sindre and Opdahl

state that a critical asset is ‘‘either information that the
enterprise possesses, virtual locations that the enterprise

controls, or computerized activities that the enterprise per-

forms’’. Hence, their definition is close to the ISO/IEC
13335-1 definition: anything that has a value to the organi-

zation. Their definition of a security goal is vague and refers
to the ‘‘security criteria’’ of the Common Criteria.What they

call ‘‘stakeholder that may intentionally harm...’’ is repre-

sented by the notion of a counter-stakeholder in the con-
ceptual framework. Misuse cases use the terms actor and

stakeholder synonymously. They only describe a narrower

view of the notion stakeholder of our conceptual framework.
The notions threat and risk of the misuse case approach

can be mapped to the equally named notions of our con-

ceptual framework. Furthermore, the authors call security
requirements what according to our conceptual framework

are specifications (or even design solutions) to the men-

tioned security goals. The notions security requirement,
domain knowledge, and vulnerability as defined in our

conceptual framework are not considered by the misuse

case approach.

5.2 SecureUML

(1) Description: Lodderstedt et al. [47] present a UML-

based modeling language for the development of secure,

distributed systems called SecureUML. In particular, their
approach focuses on embedding role-based access control

policies in UML class diagrams using a UML profile. The

UML profile defines a vocabulary for annotating class
diagrams with relevant access control information. Fur-

thermore, authorization constraints in terms of OCL [48]

preconditions are developed. They make it possible to
formally express role-based access control policies for

certain class components. SecureUML does not consider an

attacker model.
(2) Scope: Lodderstedt et al. focus on the design of role-

based access control policies, a rather partial mechanism to

fulfill confidentiality and integrity goals. Availability is not
covered by this method.

(3) Validation and QA: SecureUML does not consider

requirements (in the sense of security requirements in the
conceptual framework) elicitation, completeness of the set

of requirements, validation or verification, nor interaction

and conflicts of requirements.
(4) Relation to conceptual framework: The definition of

the notion security requirement in SecureUML matches the

definition of the notion specification of our conceptual
framework presented in Sect. 2. SecureUML can be

considered as a notation to specify and design secure soft-

ware systems, rather than a security requirements engineer-
ing method. SecureUML deals with users, which can be

considered as stakeholders in our conceptual framework.

The notions security goal and requirement, domain knowl-
edge, asset, threat, vulnerability, and risk as defined in our

conceptual framework are not considered by SecureUML.

5.3 UMLsec

(1) Description: Jürjens [49] introduces a UML-based

modeling language for the development of security-critical

systems named UMLsec. His approach considers several
security requirements according to the CIA triad. These

requirements are depicted in different UML diagrams using

stereotypes, constraints, and tagged values, which are
defined in a UML profile. The UMLsec extensions are

precisely defined and have a formal semantics. Jürjens’

work considers an attacker model based on the adversary
tag. The approach also considers domain knowledge in

terms of assumptions.

(2) Scope: Jürjens’ approach focuses on the design of a
machine, and it covers all three CIA goals.

(3) Validation and QA: Jürjens states that the formal

foundation makes it possible to apply traditional verifica-
tion techniques. For this purpose, a tool suite is provided.

UMLsec does not consider elicitation of requirements (in

the sense of CF security requirements), completeness of the
set of requirements, verification, conflicting requirements,

nor possible interaction of security, functional, and other

non-functional requirements.
(4) Relation to conceptual framework: The definition of

the notion security requirement in UMLsec matches the

definition of the notion specification of our conceptual
framework presented in Sect. 2. Hence, similar to Secure-

UML, UMLsec can be considered as a notation to specify

and design secure software systems rather than a security
requirements engineering method. The notions stakeholder

and domain knowledge of our conceptual framework are

partly covered by the UMLsec notions actor and assump-
tion, respectively. The UMLsec notions threat, vulnerabil-

ity, and risk can be mapped to the equally named notions of

our conceptual framework. The notions of security goal and
requirement as well as asset are not considered by UMLsec.

6 Goal-oriented approaches

6.1 Keep all objectives satisfied (KAOS) with
intentional anti-models

(1) Description: In his paper on ‘‘Engineering requirements
for system reliability and security’’ [37], van Lamsweerde

20 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



pulls together all his previous research on the goal-oriented

requirements analysis method KAOS [50], formalization of
requirements using linear time temporal logic [51],

requirements conflict analysis [25], and the use of anti-

models for elaborating security requirements [52]. There-
fore, van Lamsweerde does not suggest a method specifi-

cally for elaborating security goals, but extends KAOS to

include the elaboration of security requirements.
KAOS takes into consideration that there are multiple

stakeholders in and multiple views towards a system-to-be.
The views here do not refer to the differing views of the

stakeholders, but to the goal, object, agent, system opera-

tion, obstacle, security-threat and agent behavior models—
each model stands for a different view of the system. In the

goal model, the goal of a stakeholder is refined using an

AND/OR refinement tree by asking the questions why (for
upward elaboration) and how (for downward refinement) to

the leaves of the goal-refinement tree. These leaves are

then assigned to the agents. A requirement is a goal
assigned to a single agent in the software-to-be. It is

acknowledged that conflicts can exist among the goals of

the different stakeholders, and these conflicts are man-
aged—detected, analyzed, and resolved—using a number

of heuristics. The integration of the multiple views is

performed systematically by stepping through the follow-
ing activities:

1. Domain analysis, part 1: consists of a goal model of
the current system-as-is.

2. Domain analysis, part 2: consists of deriving an object

model of the system-as-is.
3. System-to-be analysis: replay of Step 1 for the system-

to-be.

4. System-to-be analysis: replay of Step 2 for the system-
to-be.

5. Obstacle and threat analysis: consists of building

obstacle and threat models and exploring resolutions
to enrich and update the goal model.

6. Conflict analysis: consists of detecting conflicts among

goals and exploring resolutions to enrich and update
the goal model.

7. Responsibility analysis: exploring alternative assign-

ments of leaf goals to system agents, selecting best
alternatives based on non-functional goals from the

goal model, and building an agent model.

8. Goal Operationalization: build an operation model
ensuring that all leaf goals from the goal model are

satisfied.

9. Behavior analysis: is about building a behavior model
for the system as a parallel composition of behavior

models for each component.

The steps of the KAOS method are re-iterable and

cyclic, although they contain data dependencies. In [52],

the authors describe the elaboration of security require-

ments in more detail. An anti-model is constructed after the
goals of the system-to-be have been elaborated and refined.

This is done through the execution of the following steps:

1. Obtain the initial goals by negating existing security

goals (roots of the anti-goal refinement trees).

2. Elicit potential attacker agents.
3. Perform an AND/OR refinement of anti-goals. When

the anti-goal refinement trees are generated, assign

anti-requirements to attackers and vulnerabilities to
attackers.

4. Derive the object-agent anti-model.

5. AND/OR operationalize all anti-requirements.

The first activity includes not only the generation of

obstacles through negating existing goals, but also the use
of logical techniques to capture obstacles. These obstacles

are then refined using fault trees, whose roots are the goals

and leaves are vulnerabilities, into an obstacle model. Such
a model shows how security goals can be obstructed by

linking negated goals to the attacker’s malicious goals,

called anti-goals, and capabilities. These capabilities define
the interface between the attacker and its own environment,

including the threatened software-to-be. The properties of

the attacker’s environment comprise the properties of the
software-to-be, including vulnerabilities that can be

exploited for anti-goal achievement. The elicitation of

potential attacker agents and the refinement of the obstacle
model are completed in steps two and three respectively.

Once an anti-model stands and the resulting obstacles

have been identified, the requirements engineers are
expected to develop countermeasures so that the precon-

ditions of the anti-goals are no longer fulfilled. Counter-

measures are selected based on (a) the severity and
likelihood of the corresponding threat, and (b) non-func-

tional goals that have been identified prior to the anti-

model. Alternative countermeasures can be produced using
goal substitution, agent substitution, goal weakening, goal

restoration, and anti-goal mitigation.

All requirements in KAOS are written by default using
semi-formal graphical notations and, if needed, using for-

mal notation. This also holds for the anti-goals and security
threats posed by an attacker. A linear real-time temporal

logic is used to formalize the goals, domain properties, and

required trigger conditions. A simple state-based Z-like
language is used to express preconditions and

postconditions.

(2) Scope: KAOS is a requirements engineering method
concerned with the elaboration of the objectives to be

achieved by the system-to-be, the operationalization of

such objectives into requirements and assumptions, the
assignment of responsibilities for those specifications to

agents such as humans, devices or software, and the

Requirements Eng (2010) 15:7–40 21

123

 Author's personal copy 



evolution of such requirements over time and across sys-

tem families. Nevertheless, we observe that the method
focuses less on the elicitation of requirements, but more on

the completeness, consistency, and feasibility of require-

ments as well as their successful operationalization in
specifications.

(3) Validation and QA: The completeness, consistency,

and validation of the elaborated requirements are an
important objective of the KAOS method and its formal-

ization mechanisms. Goals provide a criterion for com-
pleteness. A goal is fulfilled if it is satisfied by the

requirements in view of the domain properties and under

certain expectations. Obstacle analysis and the derived
countermeasures are also used to reach goal completeness.

The method also suggests a number of activities for the

verification of requirements. A first kind of verification
consists in checking that the refinements of non-soft goals

in the goal model are correct and complete so that missing

subgoals can be avoided.
A second approach to model verification consists of

checking the correctness of operationalizations of goals

from the goal model into specifications of operations from
the operational model. Formal methods and formal

refinement patterns are offered to execute both types of

verification.
Further, consistency is addressed through the analysis of

conflicts among multiple requirements.

(4) Relation to conceptual framework: The terminology
of the KAOS framework maps to the terminology of the

conceptual framework as follows. Goals refer to functional

and non-functional goals. Objects refer to information or
system components. Agents refer to stakeholders with

functional assignments or functional system resources.

Obstacles refer to either conflicting goals or requirements
of the different stakeholder views in the conceptual

framework, or to goals that conflict with the security

properties as defined in Fig. 2. Security threats are the
threats as posed by threat agents. All the analysis that

KAOS proposes with respect to the operationalization of

goals refers to the consistency, validation, and complete-
ness analyses of the specification of the system, namely,

analyses that occur after the system requirements have

been elaborated.
The KAOS method considers also domain properties

and expectations, which correspond to facts and assump-

tions in the conceptual framework. As a result, threat
analysis encompasses an analysis of the environment.

6.2 Secure i* and Secure Tropos

Tropos is a software development methodology based on

the paradigm of agent-oriented software development [53–
55]. Tropos deals with all analysis, design, and

implementation activities in a software development pro-

cess, with a strong focus on the early phases of software
development. Tropos incorporates many of the concepts of

Yu’s i*-modeling framework [56–58]. For that reason, the

following description of Tropos also applies to a large
extent to the i*-modeling framework8.

Models in Tropos are instances of a metamodel [54].

This metamodel consists of the following concepts and
relationships:

• Actor: An actor is an entity that has goals within the
system or the organization of interest. This can be a

physical or a software agent, as well as a role (an agent

can play a role) or a position (a set of roles, a position
covers roles).

• Goal: Goals represent actors’ interests towards the

system. Tropos distinguishes hard goals and soft goals.
Hard goals describe conditions that an actor would like

to achieve. Soft goals have no formal, clear-cut
definition or satisfaction criteria. Soft goals are typically

used to model non-functional requirements [59, p. 4].

• Plan or task: an abstraction of doing something. If the
task has dependencies to the machine, it refers to the

specification.

• Resource: represents a physical or informational entity.
If the resource has dependencies to security goals it

refers to an asset (respectively, to information).

• Dependency: Dependencies model the fact that one
actor depends for some reason on another to attain a

goal, execute some plan, or deliver a resource. Thus a

dependency is a ternary relationship between a de-
pender, a dependee and a dependum.

The Tropos concepts are graphically represented as

shown in Fig. 4.
Tropos distinguishes five main development phases:

early requirements, late requirements, architectural
design, detailed design, and implementation. During the
development process, the models are incrementally refined

and extended until executable development artifacts

emerge. The early requirements phase is concerned with
analyzing and understanding the organizational context.

During this phase the actors are identified and modeled.
Actors have goals and depend on each other to fulfill goals,

perform tasks, and to furnish resources. Next, during the

late requirement phase, the system-to-be is described
within its environment. This is done by representing the

system-to-be as a number of actors who have dependencies

to other elements of the model. These dependencies define
the machine’s functional and non-functional requirements.

Architectural design is concerned with the overall structure

8 Details about the i*-modeling framework can be found online:
http://www.istar.rwth-aachen.de/

22 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 

http://www.istar.rwth-aachen.de/


of the machine. Subsystems and system components of the
machine are represented as actors, too. Each architectural

component is further detailed in terms of inputs, outputs,

and control. Finally, the implementation phase comprises
the mapping of the detailed design to the implementation

platform.

There exist two extensions of Tropos called Secure
Tropos: one by Mouratidis et al. [60–62], and another one

by Massacci et al. [63]. Furthermore, there exists an

extension of the i*-modeling framework called Secure i*

[64].

(1) Description:

(a) Secure Tropos by Mouratidis et al.: Mouratidis et al.
extend the Tropos methodology with new concepts to

cover security modelling:

• Security constraint: A security constraint is defined as

‘‘a restriction related to security issues, such as privacy,

integrity and availability, which can influence the
analysis and design of a multiagent system under

development by restricting some alternative design

solutions, by conflicting with some of the requirements
of the system, or by refining some of the system’s

objectives.’’ [60]. They are graphically represented as

clouds that are labeled with a constraint.
• Secure dependency: A secure dependency describes

one or more security constraints that must be fulfilled

for a dependency to be satisfied: ‘‘... the depender
expects from the dependee to satisfy the security

constraint(s) and also that the dependee will make an

effort to deliver the dependum by satisfying the security
constraint(s).’’ [60].

• Secure entity: A secure entity represents any secure
goal/task/resource of the system.

The Secure Tropos concepts are graphically represented

as shown in Figs. 5 and 6.
The Secure Tropos process is similar to the earlier-

mentioned Tropos process, but is extended with phases to

analyze and model the new concepts. These activities
produce different kinds of diagrams, which are used as

input to the later activities.

Security reference modeling deals with the security
features of the system-to-be, the protection objectives of

the system, the security mechanisms, and also the threats to

the system’s security features. These concepts are graphi-
cally represented as shown in Fig. 7, and they can be

connected by two different kinds of links: a positive con-
tribution link when one node helps in the fulfillment of
another, and a negative contribution link when a node leads
to the denial of another. Using these concepts and links, a

developer can construct a security reference diagram.
Security constraint modeling covers the modeling of the

security constraints, which involves the following

activities:

• Security constraint delegation: allows the delegation of

a security constraint among actors.
• Secure constraint assignment: indicates the assignment

of a security constraint to a goal.

• Security constraint analysis: comprises the decompo-
sition of a security constraint into subconstraints and

the introduction of new security goals caused by the

security constraint.

Secure entities modelling is an activity complementary

to the security constraint modelling activity, which
involves the analysis of secure goals, tasks, and resources.

Secure capabilities modelling covers the identification

of the capabilities of the concerned actors and agents
necessary to fulfill the security constraints.

In [65], the authors combine Secure Tropos by Mou-

ratidis et al. with the model-based information system
security risk management (ISSRM) approach by Mayer

et al. [66] presented in Sect. 8.

For formal analysis, the Formal Tropos approach is
inspired by KAOS [51]. For the detailed design, Agent-

UML [67] is used. To analyze security attacks a scenario-

based approach is used [68].

Depender Dependee
Dependum

(Goal)

Goal TaskSoft
Goal Resource

Actor Agent Role A A
A APosition

Fig. 4 Graphical representation of Tropos concepts (cf. 60)

Depender Dependee
(S)

Constraint 
Label

Dependum

Depender Dependee
(S)

Constraint 
Label

Dependum

Depender Dependee
(S)

Constraint 
Label

Dependum
(S)

Constraint 
Label

Fig. 5 Graphical representation of secure dependencies (cf. [60])

Requirements Eng (2010) 15:7–40 23

123

 Author's personal copy 



b) Secure i*: Yu et al. [64, 69] present an extension of

Yu’s i*-modeling framework for modeling and analyzing

security trade-offs. The authors argue that security mea-
sures may be in conflict with usability, performance, and

functional requirements. Hence, Secure i* focuses on the

alignment of security requirements with other requirements.
Secure i* [64] is based on a metamodel of security con-

cepts, which considers important notions and their relation-
ships. It is centered around actors that have or seek goals.
Special security goals prevent or detect threats, or recover
the system from threats. Assets are targeted by threats (or
attacks), and actors are interested in them, actors own them,

or actors delegated the usage permission of the assets to other

actors. Threats occur through vulnerabilities. Threats might
be unintentional, or result from accident or human error.

Natural disasters are another type of threats against the

systems. Most of these notions cannot be modeled using the
i* notation. Therefore, Elahi and Yu extend this graphical

notation by malicious representations of the original i*

notions, e.g. malicious actor, vulnerability, and threat/
attack. The graphical representation of the malicious mod-

eling elements is similar to the i* elements, with the differ-

ence that the malicious modeling elements have a black
background. An exception are vulnerabilities. They are

graphically represented by a labeled black dot at resources,

and they are connected to threats/attacks via a dashed arrow
pointing from threats/attacks to vulnerabilities.

Additionally, Elahi and Yu present a trade-off analysis

method that makes use of the Secure i* notation. Following
their method, software engineers must balance trade-offs to

mitigate threats/attacks. The denial of a goal can be ana-

lyzed and expressed through negative contribution links.
Then, alternative security solutions can be examined by

analyzing the impact of each of the solutions on threats/

attacks and goals. Finally, a security solution that best fits
with the goals of multiple actors can be selected.

(c) Secure Tropos by Massacci et al.: Secure Tropos by

Massacci et al. [63] makes use of the Secure i* (Si*) lan-
guage9 (not to be confused with Secure i* by Elahi and Yu

[64]).

In addition to the notions originally supported by the i*-
modeling framework, Si* introduces the notions of delega-
tion and trust. Delegation is defined as a relation between

two actors (the delegator and the delegatee) and a goal, task,
or resource (the delegatum). The authors distinguish two
types of delegation: delegation of execution, which consid-

ers the delegation of the responsibility to achieve a goal,

execute a task, or deliver a resource. In contrast, delegation
of permission considers the delegation of the permission

achieve a goal, execute a task, or use a resource. The two
types are graphically represented as edges between delega-

tor, delegatee, and delegatum that are labeled with De
(delegation of execution) or Dp (delegation of permission).

The notion of trust is used to separate delegation

between trusted and untrusted actors. Similarly to delega-

tion, trust is defined as a relation between two actors (the
trustor and the trustee) and a goal, task, or resource (the

trustum). Again, the authors distinguish two types of trust:

trust of execution, which indicates the belief of one actor
that the trustee will achieve the goal, accomplish the task,

or deliver the resource. Furthermore, trust of permission
indicates the belief of one actor that the trustee will not
misuse the goal, task, or resource. The two types are

graphically represented as edges between trustor, trustee,

and trustum that are labeled with Te (trust of execution) or
Tp (trust of permission).

(2) Scope:

(a) Secure Tropos by Mouratidis et al.: The Secure

Tropos methodology by Mouratidis et al. can be

applied in all activities in the software development
process and all three CIA goals can be considered and

analyzed. Furthermore, by using security attack

scenarios [68], threat and attacker analysis is possible.
(b) Secure i*: The Secure i* methodology can be applied

in all activities in the software development process.

Through the security extensions of Secure Tropos, all
three CIA goals can be considered and analyzed.

(c) Secure Tropos by Massacci et al.: The Secure Tropos

methodology by Massacci et al. can be applied in all
activities in the software development process and

authorization, availability, and privacy goals can be

considered and analyzed.

(3) Validation and QA:

(a) Secure Tropos by Mouratidis et al.: In order to test the
developed solution, security attack scenarios are

proposed [68]. A security attack scenario describes

the attacker as an actor of the system, as well as the
actors’ goals. The aim is to test which solution could

cope with different kinds of attacks. After the creation
of the scenario the models are validated, e.g., by using

software inspections and checklists.

(S) Goal 
Label

(S) Task 
Label

(S) Resource 
Label

Fig. 6 Graphical representation of secure entities (cf. [60])

Protection
Objective

Security
Mechanism ThreatSecurity 

Feature

Fig. 7 Graphical representation of security reference diagram con-
cepts (cf. [60])

9 Details about Si*: http://www.sesa.dit.unitn.it/sistar_tool/

24 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 

http://www.sesa.dit.unitn.it/sistar_tool/


(b) Secure i*: The proposed qualitative trade-off analysis

method can be seen as an informal validation

procedure accomplished by assessing the impact of
security solutions on the goals of actors and on threats

or attacks.

(c) Secure Tropos by Massacci et al.: To automatically
verify the correctness and consistency of functional

and security requirements, the Secure Tropos con-

cepts were formalized based on Datalog [70], and
integrated into the CASE-Tool ST-Tool [71]. In

particular, Secure Tropos assists in verification of

availability, authorization, and privacy requirements
and in the detection of trust conflicts [72].

Furthermore, Massacci et al. define a formal semantics

of their Secure Tropos extension [63] using the Answer Set
Programming (ASP) paradigm [73]. ASP is based on facts
and rules expressed as Horn clauses. Facts are atomic

statements and are used to formalize an ‘‘intuitive’’
description of the system. Rules can be axioms that are

used to extend the formalization of the system description.

They can also be properties that are used to formalize
security goals as constraints. The formal foundation of

Secure Tropos by Massacci et al. is sufficient to verify

security goals represented as ASP properties.
(4) Relation to conceptual framework: Several notions

common to all three presented approaches can be related to
our conceptual framework as follows: actors partly corre-

spond to stakeholders of our CF. In contrast to stakehold-

ers, actors are always directly linked to the machine. Goals
correspond to goals as well as requirements, since the goals

in Tropos are incrementally refined. Hard and soft goals

correspond to functional and non-functional requirements.
Furthermore, resources correspond to the same notion of

our CF.

(a) Secure Tropos by Mouratidis et al.: Security con-

straints and security features as well as secure entities

correspond to security goals, security requirements,
and specifications of our CF. The considered threats

can be mapped to the threats defined in our CF.

Threats, as well as vulnerabilities and risk, are
covered by the combination of Secure Tropos by

Mouratidis et al. and the model-based ISSRM

approach by Mayer et al. [66] presented in Sect. 8.
As a consequence, the notions threat, vulnerability,

and risk correspond to the equally named ISSRM

notions, which in turn can be directly mapped to the
notions of our CF. Protection objectives describe

abstract solution mechanisms such as encryption,

whereas security mechanisms denote the concrete
mechanisms such as AES (Advanced Encryption

Standard). Secure Tropos by Mouratidis et al. does

not consider domain knowledge and assets.

(b) Secure i*: Security goals correspond to security goals,

security requirements, and specifications of our CF.

Assets directly correspond to assets in our CF. Secure
i* does not provide a clear-cut definition of the

notions threat and attack. It seems that they can be

mapped to the equally named notions of our CF. The
Secure i* notion vulnerability matches the similarly

named notion of our CF. Secure i* does not consider
domain knowledge (except for distinguishing honest
and malicious actors) and risk.

(c) Secure Tropos by Massacci et al.: Security constraints/

properties correspond to security goals, security require-
ments, and specifications of our CF. Secure Tropos by

Massacci et al. does not consider domain knowledge

(except for distinguishing trusted and untrusted actors),
assets, threats, vulnerabilities, or risk.

6.3 Goal-based requirements analysis method
(GBRAM)

(1) Description: The objective of the Goal-Based Require-
ments Analysis Method (GBRAM) [11] is to utilize goal-

and scenario-driven requirements engineering methods to

formulate privacy and security policies, as well as
requirements for e-commerce systems. Furthermore, the

method targets change management in organizational pri-

vacy and security policies, and system requirements. Lastly
the method is used to assure compliance of these system

requirements to the privacy and security policies.

In a later work building upon GBRAM, He and Antòn
introduce a role-engineering framework. In this ‘‘Frame-

work for Modeling Privacy Requirements in Role Engi-

neering’’ [74], goals and scenarios are adopted in order to
analyze permissions and establish role hierarchies, which

then can be used to define a role-based access control

model (RBAC). Further, in [31], the authors suggest a
context-free grammar for formalizing privacy goals artic-

ulated in natural language. The formalized goals are used

to analyze and compare the system goals stated through
them. We focus only on the earlier description of GBRAM

as a privacy and security requirements analysis method.

Change management in policies and the business envi-
ronment is accomplished through the analysis of changes

made to the long- and short-term goals of the organization.
Strategic Changes refer to long-term, broadly based initia-

tives, and Tactical Changes refer to short-term changes.

Comparably, Strategic Goals are those that reflect high-level
enterprise goals. These are useful for deriving requirements

and are expected to be stable. In contrast, Tactical Goals are
those goals that support an organization’s strategic goals.

GBRAM contains a number of heuristics that can be

applied to the various activities, as they are listed in Fig. 8.

Requirements Eng (2010) 15:7–40 25

123

 Author's personal copy 



The heuristics are used to identify, refine, and operation-

alize security and privacy goals. These are:

• Identification heuristics are used by the requirements

analyst to study existing security and privacy policies,

requirements analysis, and design documentation in
order to identify both strategic and tactical goals related

to the organizational assets. These goals are annotated,

including information about stakeholders and
responsibilities.

• Classification heuristics are used to classify the iden-

tified goals according to their type and dependencies.
• Elaboration heuristics are used to further analyze the

classified goals by studying scenarios, goal obstacles,

constraints, preconditions, postconditions, questions,
and the underlying rationale.

• Refinement heuristics are used to remove synonymous

and redundant goals. Inconsistencies among goals are
solved, and the goals are operationalized into a

‘‘requirements specification’’.

Once the goals have been identified, refined and oper-

ationalized, asset-based risk assessment and compliance

assessment activities are applied. These activities may
result in further goal refinement or the addition of new

goals to respond to the risks. In this case, the previous

activities need to be reiterated to identify conflicts, avoid
inconsistencies, and re-assess for resulting risks.

GBRAM is specifically useful for analyzing and elabo-

rating organizational goals—which are already integrated
into policies—to elicit system requirements. By empha-

sizing and integrating the management of changes in the

technology and the business environment to their method,
the authors manage to include important aspects that many

other methods ignore.

(2) Scope: Antòn et. al. suggest using GBRAM at the
beginning of the design phase in order to achieve the

security of sensitive data. The heuristics are used to iden-

tify new, as well as previously overlooked, goals based on
the results of risk assessment activities. The method is

asset-centered and builds on the PFIRES approach for

assessing risk in eCommerce systems [75]. There is no
explicit mention of the use of all CIA goals. The focus in

GBRAM papers is on confidentiality goals.

The GBRAM is mainly based on existing organizational

policies, and hence does not provide the means to deal with
different stakeholder views. The authors nevertheless

emphasize the importance of reconciling conflicts among

system requirements during the refinement phase.
(3) Validation and QA: Conflicts among goals are con-

sidered during the refinement activities. Although the

authors state that stakeholders and their privacy concerns
are important for the generation of privacy policies, no

explicit reference is made as to how conflicts of interest
between stakeholders can be solved using the method.

Similarly, negotiation methods for solving goal conflicts

are not offered, although goal conflicts and their solutions
are an important part of goal-driven requirements engi-

neering [25]. In general, no formal notation or semantics

are introduced in the method.
The authors state the necessity of compliance assess-

ment by pointing out that risk and impact assessment

alone are not enough to guarantee that the system
requirements are aligned with enterprise security and

privacy policies. Hence, they introduce a compliance

assessment activity, which is to be iteratively applied as
the requirements or the policies are updated. In the

compliance activity, the authors suggest identifying con-

flicts and inconsistencies between the policies and the
requirements using the ‘‘House of Quality’’ approach [76].

This activity guarantees the alignment between the poli-

cies and the system requirements.
No activities are suggested for attaining the complete-

ness of the policies or the requirements themselves. A

validation of both policies and system requirements is
conducted through their empirical application to multiple

e-commerce Web sites. Further, the authors have collected

privacy statements from over 100 commercial web sites
using their Privacy Goal Management Tool in order to

analyze common and conflicting goals.

(4) Relation to conceptual framework: The terminol-
ogy of GBRAM can be mapped onto our conceptual

framework in the following manner: security- and pri-

vacy-related statements from corresponding policies are
security goals in the CF. The GBRAM definition of

security requirements, which the authors call the

requirements specification, corresponds to system
requirements in the conceptual framework. Stakeholders

can be elicited from the organizational policy documents,

but no use of views is offered by the method. Require-
ments conflicts are considered: these are expected to

occur as a result of new technologies being introduced to

the application domain. Hence, stakeholder conflicts are
not attended to. Asset refers to all the objects of interest

centered around software, hardware, people, and docu-

mentation, whereas information refers to information
assets in the CF.

Information 
Sources

Security 
Requirements

Security Policy

Privacy Policy

Identify 
Goals

Assess Risks 
& Impacts

Allocate 
Resources

Operationalize 
Goals

Refine 
Goals

Elaborate 
Goals

Assess 
Compliance

Fig. 8 GBRAM activities

26 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



7 Problem frame-based approaches

In this section, we present approaches to security require-

ments engineering that make use of the ideas underlying

Jackson’s problem frames [77]. Problem frames are pat-
terns to classify software development problems.

A problem frame is described by a frame diagram (see

Figs. 9 and 10), which basically consists of rectangles, a
dashed oval, and lines between these. The task is to con-

struct a machine that improves the behavior of the envi-

ronment it is integrated in. The environment is described
by domains. Jackson distinguishes between different

domain types, which are depicted by differently decorated

rectangles (e.g., a machine domain is denoted as a rect-
angle with two vertical lines).

The connecting lines between domains represent inter-

faces that consist of shared phenomena. Shared phenomena
may be events, operation calls, messages, and the like.

They are observable by at least two domains, but controlled

by only one domain. For example, if a user types a pass-
word to log into an IT system, this is a phenomenon shared

by the user and the IT system, which is controlled by the

user. The requirements are denoted using a dashed oval. A
dashed line between requirements and a domain represents

a requirements reference, and an arrow pointing to a

domain shows that it is a constraining reference.
The problem frames approach also establishes a well-

formed vocabulary for the notions of requirement, speci-
fication, domain knowledge, and so on. This vocabulary

constitutes the basis for the conceptual framework pre-

sented in Sect. 2. For this reason, unless otherwise noted,
the vocabulary of the different approaches discussed in this

section fits the vocabulary of the CF.

7.1 Abuse frames

(1) Description: Lin et al. [78] define so-called anti-
requirements and the corresponding abuse frames. An anti-

requirement expresses the intentions of a malicious user,

and an abuse frame represents a security threat. The
authors state that the purpose of anti-requirements and

abuse frames is to analyze security threats and derive

security requirements. Figure 9 shows an abuse frame,

which constitutes a pattern to be instantiated. The instances

are called abuse frame diagrams.
It is stated that initially security objectives must be

derived by identifying critical assets to be protected. The

notion of an asset is not defined, but it seems that it is used
similarly to the ISO/IEC 13335-1 definition: anything that

has a value to the organization.

Based on a set of functional requirements and security
objectives, the authors propose an iterative threat analysis

method consisting of four steps:

1. Identify the problems and subproblems using common

problem frames. Describe the security needs as

constraints on the identified functionality.
2. Identify the threats and construct abuse frame diagrams.

Anti-requirements are obtained by negating the security

needs and capturing them in an abuse frame diagram.
3. Identify security vulnerabilities.

4. Address security vulnerabilities. It is stated that

security requirements are derived, e.g. ‘‘Limit the
number of tries for entering passwords’’.

No formal foundation or attacker model are considered
by the approach.

(2) Scope: The method is applicable to designing a

machine. Since the authors show only a small set of the
abuse frames, it is not clear if all three CIA goals are

considered.

(3) Validation and QA: Abuse frames do not consider
requirements elicitation, completeness of the set of require-

ments, validation, verification, nor interaction between secu-

rity, other non-functional, and functional requirements.
(4) Relation to conceptual framework: The notion of a

security objective is comparable to the security goals in our

conceptual framework described in Sect. 2. Negated anti-
requirements correspond to security requirements in our

CF. It becomes clear that what Lin et al. call security

X
data

Transmitted

Y1

Y4

Y3

Y2

SR

SD!Y1
machine
Sender

X

Sent
data

B

Malicious
subject

X

Received
data

B

Receiver
machine RM!E2

SM!E1

TD!Y2

Fig. 10 Security problem frame for confidential data transmission
(taken from [80])

Fig. 9 Abuse frame (taken from [78])

Requirements Eng (2010) 15:7–40 27

123

 Author's personal copy 



requirements are (according to the definition in our CF)

specifications. Biddable domains can describe stakeholders
and counter-stakeholders. Abuse frames consider the

notions asset, threat, and vulnerability, which can be map-

ped to the equally named notions of our CF. In contrast, the
notions domain knowledge and risk of our CF do not have a

counterpart considered by the abuse frames approach.

7.2 Security engineering process using patterns (SEPP)

(1) Description: To meet the special demands of software

development problems occurring in the area of security

engineering, Hatebur et al. [77] introduce security problem
frames (SPF) and concretized security problem frames
(CSPF). SPF are special kinds of problem frames, which

consider security requirements. They strictly refer to the
problems concerning security, without anticipating solu-

tions. As an example, Fig. 10 shows the frame diagram of

the security problem frame for confidential data transmis-
sion. The security requirement SR states that the Malicious
subject should not be able to derive Sent data and Received
data using Transmitted data.

Solving a security problem is achieved by choosing and

instantiating a CSPF. These frames are derived from the

security problem frames by considering generic security
mechanisms (such as using encryption for confidential data

transmission).

The authors equip both kinds of frames with a formal
description consisting of preconditions and postconditions

[79]. These are expressed using logical formulas. The

preconditions express what conditions must be met by the
environment for a frame to be applicable; the postcondi-

tions are a formal representation of a (concretized) security

requirement, i.e., they describe what (concretized) security
requirement will be achieved by the machine to be built.

A pattern system is derived by matching the precondi-

tions of the CSPFs with the postconditions of the SPFs.
The security engineering process using patterns (SEPP)

[80] is illustrated in Fig. 11. Developing a secure system

using (C)SPFs starts after the security goals and an initial
set of security requirements are elicited. Then, each elicited

security requirement must be compared to the informal

descriptions of the security requirements of the SPFs (e.g.,
if it turns out that data must be kept confidential during its

transmission, the security problem frame of Fig. 10 is

applicable). After appropriate SPFs are identified for each
given security requirement, these frames must be

instantiated.

To instantiate those domains that represent potential
attackers, a certain level of skill, equipment, and determi-

nation that a potential attacker might have must be

assumed. Via these assumptions, threat models are inte-
grated into the method.

To solve a security problem characterized by an instance
of a security problem frame, the process continues with

choosing a solution approach (e.g., symmetric or asym-

metric encryption to keep data confidential during its
transmission), thereby instantiating appropriate CSPFs.

Afterwards, the preconditions of the instantiated CSPFs

must be inspected. To guarantee that the preconditions
hold, two alternatives are possible: either they can be

assumed to hold, or they have to be established by using

some security problem frame whose postconditions match
the preconditions to be established.

In the second case, one must instantiate appropriate

SPFs, and the earlier-mentioned procedure is repeated until
all preconditions of all applied CSPFs can be proved or

assumed to hold. Therefore, the security requirements

engineering process will result in a set of security problems
and solution approaches that additionally contains all

dependent security problems and corresponding solution

approaches, some of which may not have been known
initially.

The authors extended their method by linking the

solution approaches to security component templates,
which can be connected to construct a secure software

architecture [82]. Furthermore, formal behavioral descrip-

tions of SPFs and CSPFs can be used to formally describe
security requirements and to prove refinement relations

between SPF and CSPF instances [83].

(2) Scope: Hatebur et al. have defined a pattern-based
security requirements engineering method that is applica-

ble after the security goals and an initial set of security

requirements are elicited, resulting in a specification and a

consolidated set of
security requirements

and solution approaches

select

select

extract

to be fulfilled

of

match

SPF

CSPF CSPF

SPF
instantiate

instantiate

preconditions

instance

instance

from catalogue

from catalogue

postconditions

Step 2

Step 1

security
requirements

initial set of

Fig. 11 Security engineering method using (C)SPFs (taken from
[81])

28 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



software architecture consisting of component templates of

a secure system. Since no frames addressing availability
goals are defined so far, the method can currently be used

to treat confidentiality and integrity goals.

(3) Validation and QA: The pattern system is self-con-
tained in the sense that for any precondition of a frame

covered by the pattern system, there exists at least one

frame contained in the pattern system that provides a
matching postcondition. Therefore, the (C)SPFs contained

in the pattern system can be used to completely analyze a
given security problem, whose initial security requirement

is covered by one of the frames.

Since Hatebur et al. use a graphical notation including
formal descriptions, tool support as well as automated

validation and verification for their method is conceivable,

but not yet provided. The approach does not consider the
elicitation of the initial set of security requirements (only

dependent security requirements are elicited), a concrete

attacker model, conflicting requirements, nor interaction of
security and other non-functional requirements. However, a

first paper addressing the latter two issues has already been

published [84].
(4) Relation to conceptual framework: The notion of

security requirement matches the same notion in our CF

presented in Sect. 2. The domain representing a potential
attacker, such as the Malicious subject domain in Fig. 10

correspond to the notions of a threat agent. Furthermore,

the asset or information to be protected is represented as
(lexical) domains or shared phenomena. The notions of

assumptions and facts (domain knowledge), specification,

naturally have the same meaning as the notions in our CF.
In contrast, the notions security goal, threat, vulnerability,

and risk of our conceptual framework do not have a

counterpart considered by SEPP.

7.3 Security requirements engineering framework

(SREF)

(1) Description: Haley et al. [28, 85] present a framework

for security requirements engineering. It defines the notion
of security requirements, considers security requirements

in an application context and helps answering the question

whether the system can satisfy the security requirements.
Haley et al. describe an iterative process consisting of four

steps that integrates ordinary requirements engineering and

security requirements engineering:

1. Identify Business (Functional) Requirements.

2. Identify security goals:

(a) Identify candidate assets: The stated definition of

an asset is close to the ISO/IEC 13335-1 defini-

tion: anything that has a value to the organization.

(b) Generate threat descriptions: It is stated that

security goals can be found by connecting the

CIA concerns to the assets, which can be violated
by certain actions to cause harm. Afterwards,

applying prevention to the resulting threat

descriptions leads to the security goals.
(c) Apply management principles: According to the

authors, such principles can be separation of

duties, separation of function, etc.

3. Identify security requirements: It is stated that

security requirements are constraints on functions

of the system, where these constraints operationalize
one or more security goals. The authors recommend

to draw problem diagrams to demonstrate the

functional requirements and to support capturing
the security requirements in terms of constraints on

the functions. The security requirements are denoted

textually.
4. Construct satisfaction arguments: They show that the

system can satisfy the security requirements (see

‘‘Validation and QA’’ for details).

The framework for security requirements engineering

neither considers a formal foundation nor an attacker
model.

(2) Scope: Haley et al. consider security requirements

elicitation and analysis, using their security engineering
framework. It covers all three CIA goals.

(3) Validation and QA: In [86], Haley et al. introduce

the notion of a trust assumption, which is ‘‘an assumption
by an analyst that the specification of a domain can

depend on certain properties of some other domain in

order to satisfy a security requirement’’. To decide
whether a system can satisfy the security requirements,

Haley et al. make use of structured informal and formal

argumentation [87]. A two-part argument structure for
security requirement satisfaction arguments is proposed,

consisting of an informal and a formal argument. In

combination with trust assumptions, satisfaction argu-
ments facilitate showing that a system can meet its

security requirements.

The framework for security requirements engineering
does not consider completeness of the set of requirements,

conflicting requirements (although it is mentioned that such

conflicts can lead to inconsistent requirements), nor inter-
action between security and other non-functional

requirements.

(4) Relation to conceptual framework: The notions of
security goal and security requirement match the notions

of our conceptual framework. Haley et al. also distinguish
quality and functional goals and requirements, which

matches the notions of non-functional and functional

Requirements Eng (2010) 15:7–40 29

123

 Author's personal copy 



goals and requirements of our conceptual framework. Again,

the notions of (trust) assumptions and facts (domain knowl-
edge), specification, asset, threat, and risk naturally have the

samemeaning as the notions of our CF. In contrast, the notion

vulnerability of our CF is not considered by SREF.

8 Risk analysis-based approaches

In this section, we present approaches to security require-
ments engineering that are based on risk or threat analysis.

The presented techniques mainly focus on the elicitation of

security goals and requirements, rather than analyzing them
with respect to further refinement or reconciliation of

possible conflicts.

8.1 CORAS

(1) Description: CORAS [88] is a model-based method
for security risk analysis. The CORAS method con-

sists of seven steps:

1. Introductory meeting between analysts and client to
clarify the client’s overall goals.

2. Meeting with representatives of the client to clarify

insights from first meeting and reading relevant
documentation.

3. More precise description of the target to be evaluated

including assumptions made.
4. Experts workshop to identify unwanted incidents such

as threats and vulnerabilities.

5. Workshop to determine consequences and likelihoods
of the previously identified incidents.

6. Presentation of a first risk analysis to the client to

apply corrections.
7. Treatment Identification.

The artifacts produced by analysts when applying the
CORAS method are denoted in the CORAS security risk

modelling language [89], which is inspired by UML [44].

(2) Scope: CORAS is an organizational method that
covers threat, vulnerability, and risk analysis. It also covers

the elicitation of security goals.

(3) Validation and QA: CORAS supports QA by
intensive communication between analysts and clients. The

feedback from analysts and clients leads to improvements

in the quality of the artifacts produced. The CORAS
security risk modelling language [89] is equipped with a

structured semantics, which explains step-by-step how a

graphical CORAS model can be interpreted and how it can
be translated into an English text.

(4) Relation to conceptual framework: The notions

security goal, assumption, risk, threat, attack, and vulner-
ability match the notions of our CF. Most other notions

given in our CF are not considered by CORAS.

8.2 Tropos goal-risk framework

(1) Description: Asnar et al. [90] propose the Tropos Goal-
Risk Framework, an extension of earlier work [91], to

assess risk based on trust relations among actors. More

precisely, the extension comprises the introduction of the
notion trust as a ‘‘subjective probability that defines the

expectation of an actor about profitable behavior of another

actor’’ [90]. Trust, combined with the concept of delega-
tion of the fulfillment of a goal, enables the modeling of

responsibility transfer from one actor to another. The

authors introduce a three-layer model that comprises the
goal, event, and treatment layers as an extension of the

original Tropos goal model. Goals are AND/OR decom-

posed and related to external events that can negatively
influence their satisfaction. Treatments are introduced to

mitigate the effects of such events. The authors propose

qualitative risk reasoning techniques to support the analyst
in evaluating and choosing among different possible sub-

goal trees. Additionally, the method is tool supported by

the GR-Tool10. The method is described by a set of algo-
rithms written in pseudo code notation.

(2) Scope: The proposed Goal-Risk Framework by

Asnar et al. [90] comprises all software development steps
covered by Tropos. It covers security requirements elici-

tation and analysis based on risk analysis.

(3) Validation and QA: QA is included in the approach
by integrating risk analysis techniques into security

requirements engineering. Risk analysis is used to evaluate

alternative goals and to assess countermeasures to mitigate
risks.

(4) Relation to conceptual framework: Since Asnar

et al. make use of the Tropos modeling framework, the
notions security goal and security requirement correspond

to the equally named notions of our conceptual frame-

work. The notion security requirement is also used to
refer to a specification. Furthermore, the notions risk and

threat (also called event) match the equally named

notions of our conceptual framework. The work by Asnar
et al. does not consider the notions domain knowledge,

asset, and vulnerability given in the conceptual

framework.

8.3 Model-based information system security risk

management (ISSRM)

(1) Description: Mayer et al. [66] propose a security

requirements engineering process that consists of the fol-
lowing four steps: context analysis and asset identification,

security goal determination, refinement of these goals to
security requirements, and countermeasures selection. Both

10 http://www.troposproject.org/tools/grtool/

30 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 

http://www.troposproject.org/tools/grtool/


of the latter two steps are based on a risk analysis approach

named model-based ISSRM.
Thereby, Mayer et al. propose to make use of Yu’s i*

[57, 58] requirements engineering techniques, which can

also be used to deal with security requirements [69].
(2) Scope: The proposed method by Mayer et al. com-

prises security requirements elicitation driven by a risk

analysis method. It also supports analyzing security
requirements through context and asset analysis.

(3) Validation and QA: The work by Mayer et al. does
not describe special QA treatments. Since it makes use of

the i* modeling framework, possibly QA procedures from

this requirements engineering approach can be applied.
(4) Relation to conceptual framework: Mayer et al.

make use of the i* modeling framework. Hence, the notions

security goal and security requirement correspond to the
equally named notions of our CF. The notion security

requirement is also used to refer to a specification. Fur-

thermore, the notions assumption, risk, threat, attack, and
vulnerability match the equally named notions of our CF.

The work by Mayer et al. does not consider the remaining

notions given in our CF.

9 Common criteria-based approaches

9.1 Common Criteria (CC)

(1) Description: The Common Criteria are an international

standard to achieve comparability between the results of

independent security evaluations of IT products
(machines). Such a machine, which may consist of hard-

ware and software, is called Target of Evaluation (TOE).

The name Common Criteria is an abbreviation for the
Common Criteria for Information Technology Security

Evaluation [1]. The current version is 3.1, dating from

September 2006. The CC are also known as ISO/IEC
15408. The CC are compiled by a consortium of govern-

mental organizations. Contributing countries include Aus-

tralia/New Zealand, Canada, France, Germany, Japan,
Netherlands, Spain, United Kingdom, and the United

States.

With respect to notation, the CC use natural language
for all of its concepts, as well as for the TOE and its

properties. However, some concepts such as Security

Functional Requirements (SFR) are formulated using a
standardized language for enhanced exactness and

comparability.

The CC standards present a General Model of some
basic concepts (see Fig. 12, cf. [1]) that are drawn from

traditional security engineering concepts. This model

reflects the main scope and origin of the CC (evaluation of
specific IT security products). Without adaptation and

modification, however, it is less suited to be used as a

single common ground for security requirements engi-

neering (as proposed by [34]). Further, the General Model
does not consider multilateral security.

The main concepts in Fig. 12 are defined as follows.

Assets are defined as entities that the owner of the TOE
places value upon; protecting assets is the responsibility of

the TOE owner. Other stakeholders and their security goals

are not considered here, though in further documents on
SFR (see below) the protection of user data is mentioned.

Threat agents seek to abuse assets in a manner contrary to

the goals (interests) of the owner, leading to potential
reduction of the asset value for the owner.

Threats include the loss of asset confidentiality, integrity
or availability—but these threatened security goals are not

made explicit in the CC model. This is a drawback for

requirements engineering and gives also rise to CC-internal
inconsistencies between asset definition and asset examples

(e.g., in [1], Part 1, p. 34).

Threats imply risk to the assets, based on the likelihood
and the impact of the threat being realized. Countermeasures

are imposed by the owner to reduce the risks. These coun-

termeasures comprise IT countermeasures (e.g., firewalls)
and non-IT countermeasures (e.g., guards, procedures).

Three main phases can be identified in a CC process (cf.

Fig. 13). Potential TOE owners infer from their security
goals (called security needs in the CC) the need for specific

types of security machines, which are types of TOE. These

are refined into documents called Protection Profiles (PP).
On the other hand, we have TOE developers or vendors

who claim that their specific machine conforms to abstract

PP. They publish their claims in documents called Security
Targets (ST). In between, there is the actual CC evaluation

process that checks these claims and can describe the

confidence into its evaluation results according to standard
assurance levels.

The specific concepts of the CC used in this evaluation

process are defined as follows. The Target of Evaluation
(TOE) is a set of software, firmware, and/or hardware
possibly accompanied by guidance. For requirements

Countermeasure Risk

AssetThreat Agent Threat

Owner value
wish to

minimize

wish to abuse and / or may damage

give rise to

increase to

reduce

impose

to

Fig. 12 Common Criteria—general model

Requirements Eng (2010) 15:7–40 31

123

 Author's personal copy 



engineering purposes, it can be considered as the machine,

or as part of a larger machine that is responsible for

security functionality.
A Protection Profile (PP) is an implementation-inde-

pendent statement of security needs for a TOE type. A PP

describes a TOE type (e.g. firewalls). A PP is described as a
security specification on a relatively high level of
abstraction and should not contain detailed protocol

specifications, or concrete descriptions of algorithms or
operations. There are attempts to extend the PP concept to

very large systems using system-level protection profiles

(SLPP). For challenges involved in this approach, cf. [92].
In contrast to a PP, the Security Target (ST) describes a

specific TOE (see Fig. 14). It is an implementation-depen-
dent statement of security needs for a specific identified

TOE. PP and ST have nearly the same structure. They

contain an introduction, which includes descriptions of the
TOE on different levels of abstraction. The Conformance

Claim shows whether and to which PP the ST claims con-

formance. The Security Problem Definition includes the
threats to be countered, the Organisational Security Policies

(OSP) to be enforced, and assumptions to be fulfilled by the

combination of the TOE and its operational environment.
Further, the ST and PP contain Security Objectives for

the TOE and for the operational environment to solve the

security problem at hand. These are refined into Security
Requirements (in terms of the CC, that is functional

specifications for a security machine) that provide a

translation of the security objectives for the TOE into
Security Functional Requirements (SFR) and that use a

Security Target

ST Introduction

Conformance Claims

Security Problem 
Definition

Extended Components 
Definition

Security Requirements

TOE Summary 
Specification

Security Objectives (SO)

Threats

Organisational Security Policy (OSP)

Assumptions

SO for TOE

SO for Operational Environment

Security Functional Requirements (SFR)

Security Assurance Requirements (SAR)

PP / Package Conformance Claim

Fig. 14 Common Criteria—security target (ST)

Security NeedsAsset Owner

Need for Security 
Product Type

Protection Profile 
(PP)

Developer / 
Vendor

TOE 
(Specific Product)

Security Target 
(ST)

Security Problem 
Definition

Governments

User Groups

Corporations

Security 
Objectives

TOE Security 
Objectives

Security Functional 
Requirements (SFR)

TOE Summary 
Specification

Conformance 
Claim

Evaluator

PP Catalogues

ST/TOE 
Evaluation

PP Evaluation

Security Assurance 
Requirements (SAR)

Operational Environment 
Security Objectives

Threats Assumptions

Development

Evaluation

Security Needs

Fig. 13 Common Criteria—
specific concepts

32 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



standardized language. In addition, Security Assurance

Requirements (SAR) for the evaluation process are stated.
Finally, the ST (but not the PP) contains a TOE Summary

Specification that indicates how the SFRs are implemented

in the TOE.
The CC make use of patterns. The SFR used in the CC

are textual patterns for specifications. SFR can be com-

bined into named sets in the CC, for example, packages,
families, and classes. One explicit goal of the CC is to

make these patterns available in public catalogs for reuse.
In a different sense, the whole PP is a pattern for a type of

(security) machine and its specification.

(2) Scope: The CC standard itself does not present an
actual requirements engineering method.

However, it is an important standard in the field of

security engineering, and establishes its own body of
security engineering concepts and standardized language. It

influences security requirements engineering methods such

as SREP [93] (discussed in the next section).
The CC are mainly concerned with security function-

ality and its assurance.

The CC are not concerned with legal aspects, evaluation
of cryptographic algorithms or administrative security

measures. Assumptions on the operational environment are

to be stated explicitly.
CC evaluations can comprise all three major high-level

goals of information security (confidentiality, integrity,

availability), as well as many subaspects, which are refined
in high detail using the corresponding catalogs. Threats, risk,

and countermeasures are an integral part of the method as

well. These concepts are included in the General Model of
the CC (cf. Fig. 12). Threats are an important part of a CC

evaluation and are included in the corresponding documents,

such as the Protection Profile and the Security Target. The
actual evaluation methodology is described separately.

(3) Validation and QA: In general, it is the task of the

(potential) TOE owners to check for the completeness of
the requirements, as well as to check if their security needs

are met by the security target. Large user groups, corpo-

rations, and governments can develop and evaluate Pro-
tection Profiles that can be incorporated into public PP

catalogs and reused. This procedure should increase their

soundness and relative completeness. In addition, depen-
dencies between Security Functionality Requirements

(SFR) are explicitly considered, which aids in achieving

completeness. However, the CC standard does not provide
a formal semantic model.

The actual evaluation method for the CC is not part of

the main standard. But one of the main goals of the CC is to
assign an assurance level to the result of evaluation pro-

cedures. Assurance in CC terms is defined as grounds for
confidence that a TOE meets the SFRs. To express and
compare this degree of confidence, assurance packages

such as the Evaluation Assurance Levels (EAL 1-7) can be

used, cf. [1] Part 3.
Security requirements in the CC are functional (or

assurance) requirements; other functional or non-functional

requirements are not considered if they are not ‘‘relevant’’
to the security functionality. However, no systematic

approach is presented to identify this relevance. Require-

ments conflicts in general are not explicitly considered, and
correspondingly there are no ideas or methods for negoti-

ation presented in the CC.
(4) Relation to conceptual framework: The CC security

needs correspond to security goals in our CF. The security

objectives in the PP could be mapped not only to our
security requirements, whereas the security objectives in the

ST and especially the SFR correspond to specifications, but

also to more detailed design and implementation properties.
The CC assumptions and security objectives for the oper-

ational environment refer to domain knowledge in our CF.

9.2 Security requirements engineering process (SREP)

(1) Description: Mellado et al. [93, 94] present a Security
Requirements Engineering Process (SREP). SREP is an

iterative and incremental security requirements engineering

process, which is based on the Unified Process [95] soft-
ware life-cycle model with multiple phases. Further, SREP

is asset-based, risk driven, and, following the Common

Criteria [1] (CC) supports the reuse of security require-
ments, as well as the reuse of knowledge on assets, threats,

and countermeasures.

In SREP, UML [44] use cases are used to model security
objectives, and misuse cases (see Sect. 5.1) are used to

elicit threats [96]. Furthermore, a template is suggested for

ranking threats, attacks, and risks. Security objectives and
threats are modeled with use case and misuse case dia-

grams, threat specification is done using template-based

misuse cases, while security requirements are specified
using template-based use cases.

Based on the CC, the authors propose a Security
Resources Repository (SRR), which stores all the reusable
security elements. A metamodel of the SRR is shown in

Fig. 15 where the darker objects identify the extension of

SREP to the repository metamodel as suggested by [96].
SREP is applied by working through the following nine

activities:

1. Agree on definitions: The development or security

analysis teams agree on a set of security definitions,

organizational security policies, and the security
visions of the information system. These definitions

are then built into the Security Vision Document,
which lists the most important assets of the informa-
tion system.

Requirements Eng (2010) 15:7–40 33

123

 Author's personal copy 



2. Identify vulnerable and/or critical assets: An analysis

of the functional requirements identifies important
assets. Assets can be information, tangible assets

(money, products), or intangible assets (reputation).

The result is a more in-depth analysis of assets than in
the Security Vision Document.

3. Identify security objectives and dependencies: If the

type of assets identified in the previous activity can be
found in the SRR, then their associated security

objectives are retrieved. If not, the security objectives

for each asset are determined, also taking into account
organizational and legal restrictions. The list of security

objectives should be refined in subsequent iterations by

establishing dependencies between the security objec-
tives. These are then compiled in the Security Objec-
tives Document, using the CC assurance classes.

4. Identify threats and develop artifacts: If the assets can be

found in the SRR, then it is possible to retrieve their

associated threats from the repository. If not, use cases,
misuse cases, and threat-attack trees can be applied.

Further, public-domain sources and threat lists for the

type of assets selected and following the CC assurance
requirements for identifying potential vulnerabilities are

utilized.

5. Risk assessment: The probability of each threat is
determined, as well its potential impact and risk. The

authors use tables (based on the method MAGERIT

[97]), in which they quantify the impact and risk as

well as the possible frequency of an attack. The results

are captured in the Risk Assessment Document.
6. Elicit security requirements: Each security objective is

analyzed for possible relevance and the threats it

poses. This analysis is then used to identify the suitable
security requirements that mitigate the threats at the

necessary levels according to the risk assessment.

Here, the interaction between security objectives,
functional requirements, and threats are handled. The

results are collected in the Security Requirements
Specification Document.

7. Categorize and prioritize requirements: According to

the risk, the security requirements are ranked.

8. Requirements inspection: The CC assurance require-
ments are used to validate the security requirements. If

all security objectives are fulfilled, all security require-
ments are satisfied, and all the threats are countered,

then the security problem is assumed to be solved. This

result is then captured in the Security Requirements
Rationale Document.

9. Repository improvement: TheSRRcanbe extendedwith

new elements. Part of this activity is the writing up of the
Security Target (ST) document as it is defined in the CC.

None of the SREP activities has a formal foundation.

The analysis of threats, attacks, and risks are indispensable
to the method. They are used to elicit the security objec-

tives and the security requirements.

Threat

Security 
Requirement 

Cluster

Misuse 
Cases

Threat 
Specification

Generic 
Threat

Specific 
Threat

Security 
Objective

Asset

Plain 
Text

Threat/
Attack Tree

UMLSec
Security 

Use Case

Security Requirement 
Cluster Specification

Plain 
Text

Specific 
Security 

Requirement

Generic 
Security 

Requirement

Security 
Requirement

req-req

Security 
Test

Counter 
Measure

0..* 0..*

mitigate

1..*

1 0..*

1..*

target 
by

attached to

1 0..*

broken
down to

1..*
1

1..*

0..*
1..* 0..*

0..*1

Fig. 15 SREP metamodel for
the security resources repository
(SRR)

34 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



(2) Scope: The method can be applied once the func-

tional requirements analysis has been completed. Since
SREP is based on the CC, it considers all three CIA goals.

(3) Validation and QA: SREP considers the complete-

ness of the set of requirements in Activity 8. If all security
requirements are satisfied, and all security objectives are

achieved, and all the threats are countered, then the secu-

rity problem is assumed to be solved. The consistency and
completeness of requirements are improved by reusing

(and iteratively refining) requirements in the SRR over
several projects.

The interaction with functional requirements is consid-

ered in Activity 6. Other non-functional requirements are
mentioned as important, but are not picked up in the

method description. Conflicts are mentioned in the meta-

model [93]. But, although the authors address the impor-
tance of analyzing conflicts, they do not come back to the

topic in any of their activities.

(4) Relation to conceptual framework: The terminology
of SREP is mapped onto our conceptual framework in the

following manner. Security objectives stand for both the

security goals and security requirements in the CF. The
agreement of stakeholders is mentioned in the ‘‘require-

ments inspection’’ activity. Otherwise, stakeholder views

are not part of the method. It is assumed that the elabora-
tion of functional goals are completed. Other non-

functional goals are not a focus of the method. The spec-

ification refers to both system requirements and the spec-
ification in the CF. Further, the specification is supposed to

come close to a specification of the design of the security

mechanisms to be implemented in the machine.
The analysis is made at the level of use cases, and hence

circumstances or similar abstractions are not used. The

authors perform amuchmore detailed taxonomyof assets and
a continuous analysis of the interplay between risks, threats,

and countermeasures. Preconditions in the use cases can be
interpreted in some cases as environmental assumptions.

10 Comparison of security requirements engineering
methods

Tables 5, 6, and 7 present mappings of main concepts of

our CF to notions used by the previously presented SRE

methods. Here, the notion security requirement (CF) for
simplicity encompasses both the levels of security

requirement and security system requirement in the

abstraction hierarchy of security properties (Fig. 2), with-
out referring to the state of reconciliation in detail.

A table entry labeled with " means that the notion

defined in the considered approach is used in a narrower
sense than the notion defined by our CF. An empty entry

Table 5 Mapping of notions used in SRE methods to our conceptual framework

Method Notions of our conceptual framework

Security goal (CF) Security requirement (CF) Specification (CF)

MSRA * * *
SQUARE * System-level req. Software-level req.

Misuse cases * – Security req.

SecureUML – – Security req.

UMLsec – – Security req.

KAOS ? anti-models * * *
Secure Tropos (Mouratidis et al.) Softgoal, security constraint/feature, cf. Security goal cf. Security goal

Secure entity

Secure i* Softgoal / * cf. Security goal cf. Security goal

Secure Tropos (Massacci et al.) Softgoal, security constraint/property cf. Security goal cf. Security goal

GBRAM * * *
Abuse frames Security objective Negated anti-req. Security req.

SEPP – * *
SREF * * *
CORAS * – –

Tropos goal-risk FW Softgoal / * cf. Security goal cf. Security goal

Model-based ISSRM Softgoal / * cf. Security goal cf. Security goal

CC Security need Security objective (PP) Sec. objective (ST),

SFR

SREP Security objective * *

Requirements Eng (2010) 15:7–40 35

123

 Author's personal copy 



means that a comparison is not possible because the con-

sidered notion is not defined in detail in this method. An
entry labeled with—indicates that there is no comparable

notion in the considered approach. Entries labeled with *
denote that the notion used in this approach matches the
notion defined by our CF.

Table 7 Mapping of notions
used in SRE methods to our
conceptual framework

Method Notions of our conceptual framework

Threat (CF) Vulnerability (CF) Risk (CF)

MSRA – – –

SQUARE * – *
Misuse cases * – *
SecureUML – – –

UMLsec * * *
KAOS ? anti-models * * –

Secure Tropos (Mouratidis et al.) * * *
Secure i* * * –

Secure Tropos (Massacci et al.) – – –

GBRAM * * *
Abuse frames * * –

SEPP – – –

SREF * – *
CORAS * * *
Tropos goal-risk FW event / * – *
Model-based ISSRM * * *
CC * * *
SREP * * *

Table 6 Mapping of notions used in SRE methods to our conceptual framework

Method Notions of our conceptual framework

Stakeholder (CF) Domain knowledge (CF) Asset (CF)

MSRA * * Information

SQUARE " Client – –

Misuse cases " Actor – *
SecureUML " User – –

UMLsec " Actor Assumption –

KAOS ? anti-models " Agent Domain properties, " object

Expectation

Secure Tropos (Mouratidis et al.) " Actor – –

Secure i* " Actor – *
Secure Tropos (Massacci et al.) " Actor – –

GBRAM * – Asset/information

Abuse frames " Biddable domain – *
SEPP " Biddable domain Fact, assumption " Lexical domain,

Phenomenon

SREF " Biddable domain " Fact, trust assumption *
CORAS – Assumption *
Tropos goal-risk FW " Actor – –

Model-based ISSRM " Actor Context *
CC TOE owner (general model), user (SFR) Assumption, oper. env. *

Security objective

SREP – *

36 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 



Table 8 summarizes the presentation of the methods in
the preceding sections. The criteria in the table correspond

to the central concepts of the framework presented in Sect.

2. An entry in the table indicates that the authors of a
method explicitly consider a criteria. However, the free

cells of the table do not imply that a method could not

cover a criteria.
Most methods consider the complete CIA triad. Some of

them also address other requirements than security

requirements.
Although it is generally accepted that a unilateral view

to security is outdated and the views of different stake-

holders must be taken into account in SRE, only MSRA,
SQUARE, KAOS and the Secure Tropos variants explicitly
address this issue. This does not mean that it is impossible
to consider the views of different stakeholders using the

other methods. However, they do not capture this issue in

their various activities.
Multilateral security stresses the fact that stakeholders

do not only have justified different security concerns, but

that these concerns also are often inherently contradictory,
and a compromise must be established between them in a

way that incorporates all stakeholders, explicitly. MSRA is

the only method that proposes steps to address this issue.

There is no clear-cut distinction between methods
addressing mostly security goals and requirements, and

methods that are more oriented toward the machine and its

specification. Only the UML-based methods do not take
environmental issues into account, whereas only MSRA

does not derive a specification of the machine.

All methods but MSRA and SecureUML consider
threats. The concept of a counter-stakeholder in MSRA

cannot be considered a threat agent, because it does not

imply that the counter-stakeholder will threaten the system.
SecureUML is concerned with access control only.

Therefore, general threat analysis is out of the scope of this

method.
Risk analysis is often considered an important aspect

of security requirements engineering. Hence, the risk-
based approaches, CC, SREP, and Misuse Cases put it

into the center of attention. SQUARE devotes two steps

to risk analysis. To some extent, GBRAM also considers
risks.

The majority of the methods provide means for quality

assurance.
Finally, while several methods cover most of the criteria

mentioned in Table 8, the UML-based approaches and

Abuse Frames have a narrower scope of application.

Table 8 Comparison of security requirements engineering methods

Method Criteria

Considers: Stakeholder views? Multi-lateral? Oriented toward Includes QA? Formality?

CIA Other reqs. System Machine Threats Risks

MSRA 9 9 9 9 9

SQUARE 9 9 9 9 9 9 9 9 9

Misuse cases 9 9 9 9 9

SecureUML 9 9

UMLsec 9 9 9 9 9

KAOS ? anti-models 9 9 9 9 9 9 9 9 9

Secure Tropos 9 9 9 9 9 9 9 9

(Mouratidis et al.)

Secure i* 9 9 9 9 9 9 9 9

Secure Tropos 9 9 9 9 9 9 9 9

(Massacci et al.)

GBRAM 9 9 9 9 9

Abuse frames 9 9 9

SEPP 9 9 9 9 9

SREF 9 9 9 9 9 9 9

CORAS 9 9 9 9 9

Tropos goal-risk FW 9 9 9 9 9 9 9 9

Model-based ISSRM 9 9 9 9 9 9 9

CC 9 9 9 9 9 9

SREP 9 9 9 9 9 9

Requirements Eng (2010) 15:7–40 37

123

 Author's personal copy 



11 Conclusion and perspectives

This article contributes to security requirements engineering

in two major aspects: first, it introduces a conceptual frame-

work for security requirements engineering that relates the
central concepts used in this field; second, it maps the diverse

terminologies of different methods to that framework, facil-

itating access to those methods and their comparison.
There, apparently, is no established terminology for the

field of security requirements engineering. The literature

often uses the same notions, such as ‘‘requirement’’ or
‘‘asset’’, for different, though related, concepts. The con-

ceptual framework of Sect. 2 distinguishes the different

concepts such as security goals, requirements, specifica-
tions, and security properties, and thus provides a consis-

tent terminology. Mapping the terminology of a particular

method to the conceptual framework allows to assess the
scope of the method—and, therefore, also its usefulness for

a given purpose.

We consider a common case study to compare these
methods as a very desirable effort for the future. A common

illustrative example could help practitioners and academia

to select a method that fits their application area best.
Moreover, the integration of the different SRE methods

comprises a challenging, but worthwhile improvement for

future research directions. In fact,methods such as theTropos
variants, KAOS, i*, and SEPP have strong focus on

requirements engineering. Still, the artifacts produced during
this development phase involve the difficulty of how to use

them as a basis for the design phase. Therefore, the methods

focusing on security requirements engineering should be
combined with those that focus on the design of secure soft-

ware and systems, such as UMLsec and SecureUML.

Also, the key features of the rather new developments
such as the risk-driven approach model-based ISSRM, and

the multilateral methods MSRA and SQUARE, should be

integrated into the more sophisticated methods such as the
Tropos variants and KAOS. A first attempt in this direction

constitutes the Tropos Goal-Risk Framework [90].

Not least, the consideration of further quality require-
ments besides security, adaption to continuous changes in

technology and business demands, and methods for

requirement conflict resolution are important directions for
future work.

Acknowledgments We thank the anonymous reviewers for their
helpful comments and suggestions.

References

1. Common Criteria for Information Technology Security Evalua-
tion, Version 3.1. (2006) [Online]. Available: http://www.
commoncriteriaportal.org/public/expert/

2. Bishop M (2003) Computer security. Addison-Wesley, New York
3. Viega J, McGraw G (2001) Building secure software: how to

avoid security problems the right way. Addison-Wesley, New
York

4. Eckert C (2004) IT-Sicherheit, 3rd edn. Oldenbourg-Verlag,
München

5. Firesmith DG (2003) Common concepts underlying safety,
security, and survivability engineering. Carnegie Melon Univer-
sity. Technical report SEI-2003-TN-033

6. Rupp C, SOPHIST GROUP (2003) Requirements-engineering
und -management, 3rd edn. Carl Hanser Verlag

7. Rannenberg K, Pfitzmann A, Müller G (1999) IT security and
multilateral security. In: Müller G, Rannenberg K (eds) Multi-
lateral security in communications—technology, infrastructure.
Economy Addison-Wesley, pp 21–29

8. Zave P, Jackson M (1997) Four dark corners of requirements
engineering. ACM Trans Softw Eng Methodol 6(1):1–30

9. Fricker S, Gorschek T, Glinz M (2008) Goal-oriented require-
ments communication in new product development. In: Pro-
ceedings of the international workshop on software product
management. IEEE Computer Society, Los Alamitos, pp 27–34

10. Liu L, Yu E (2001) From requirements to architectural design
using goals and scenarios. In: Proceedings of the international
workshop from software requirements to architectures (STRAW).
Toronto

11. Antòn AI, Earp JB (2000) Strategies for developing policies and
requirements for secure electronic commerce systems. Depart-
ment of Computer Science, North Carolina State University.
Technical report TR-2000-09. [Online]. Available: cite-
seer.ist.psu.edu/anton00strategies.html

12. Mylopoulos J, Chung L, Nixon B (1992) Representing and using
non-functional requirements: a process-oriented approach. IEEE
Transactions on Software Engineering pp 483–497

13. Sommerville I (2007) Software Engineering, 8th edn. Addison
Wesley, New York

14. Glinz M (2007) On non-functional requirements. In: Proceedings
of 15th IEEE international requirements engineering conference
(RE ’07), pp 21–26

15. Jureta I, Mylopoulos J, Faulkner S (2008) Revisiting the core
ontology and problem in requirements engineering. In: Proceed-
ings of 16th IEEE international requirements engineering con-
ference (RE ’08), pp 71–80

16. Information technology—security techniques—code of practice
for information security management (ISO/IEC FDIS 17799:2005)
(2005) International Organization for Standardization

17. Information technology—security techniques—management of
information and communications technology security—part 1:
Concepts and models for information and communications
technology security management (ISO/IEC 13335-1:2004)(2004)
International Organization for Standardization

18. NIST SP 800-26: Security Self-Assessment Guide for Informa-
tion Technology Systems (2001) National institute of standards
and technology

19. Berry DM, Lawrence B (1998) Guest editors’ introduction:
requirements engineering. IEEE Softw 15(2):26–29

20. Robinson WN, Pawlowski SD, Volkov V (2003) Requirements
interaction management. ACM Comput Surv 35(2):132–190

21. Finkelstein A, Baggay D, Hunter A, Kramer J, Nuseibeh B (1994)
Inconsistency handling in multi-perspective specifications. IEEE
Trans Softw Eng (20):569–578

22. Easterbrook S, Nuseibeh B (1996) Using viewpoints for incon-
sistency management. Softw Eng J 31–43

23. Kotonya G, Sommerville I (1996) Requirements engineering with
viewpoints. BCS/IEE Softw Eng J 11(1):5–18

24. Giorgini P, Massacci F, Mylopoulos J, Zannone N (2006)
Detecting conflicts of interest. In: Proceedings 14th IEEE

38 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 

http://www.commoncriteriaportal.org/public/expert/
http://www.commoncriteriaportal.org/public/expert/


international requirements engineering conference (RE ’06).
IEEE Computer Society, pp 308–311

25. van Lamsweerde A, Darimont R, Massonet P (1998) Managing
conflicts in goal-driven requirements engineering. IEEE Trans
Softw Eng 24

26. Jackson M, Zave P (1995) Deriving specifications from require-
ments: an example. In: Proceedings 17th international conference
on software engineering. ACM Press, Seattle, pp 15–24

27. Haley B, Laney C, Moffett D, Nuseibeh B (2006) Using trust
assumptions with security requirements. Requir Eng 11(2):138–
151

28. Haley CB, Laney R, Moffett J, Nuseibeh B (2008) Security
requirements engineering: a framework for representation and
analysis. IEEE Trans Softw Eng 34(1):133–153

29. Santen T (2006) Stepwise development of secure systems. In
Górski J (ed) International conference on computer safety, reli-
ability and security (SAFECOMP), ser. LNCS 4166. Springer, pp
142–155

30. Moffett JD, Haley CB, Nuseibeh B (2004) Core security
requirements artifacts. The Open University, UK (technical
report)

31. Breaux TD, Antòn A (2005) Analyzing goal semantics for rights,
permissions, and obligations. In: Requirements engineering, pp
177–188

32. Mayer N (2009) Model-based management of information system
security risk. Ph.D. dissertation, University of Namur [Online].
Available: http://www.nmayer.eu/publis/Thesis_Mayer_2.0.pdf

33. Mayer N, Heymans P, Matulevičius R (2007) Design of a mod-
elling language for information system security risk management.
In: 1st International conference on research challenges in infor-
mation science (RCIS 2007)

34. Mellado D, Fernandez-Medina E, Piattini M (2006) A compari-
son of the Common Criteria with proposals of information sys-
tems security requirements. In: ARES ’06: proceedings of the
first international conference on availability, reliability and
security (ARES’06). IEEE Computer Society, Washington, DC,
pp 654–661

35. Kalloniatis C, Kavakli E, Gritzalis S (2004) Security require-
ments engineering for e-government applications: analysis of
current frameworks. Springer, Berlin

36. Tøndel I, Jaatun M, Meland P (2008) Security requirements for
the rest of us: asurvey. Softw IEEE 25(1):20–27

37. van Lamsweerde A (2007) Engineering requirements for system
reliability and security. In: Broy JGM, Hoare C (eds) Software
system reliability and security, ser. NATO security through sci-
ence series-D: information and communication security, vol 9.
IOS Press, pp 196–238

38. Gürses S, Santen T (2006) Contextualizing security goals—a
method for multilateral security requirements elicitation. In:
Dittmann J (ed) Proceedings of Sicherheit 2006—Schutz und
Zuverlässigkeit, ser. Lecture notes in Informatics. Gesellschaft
für Informatik, pp 42–53

39. Gürses S, Berendt B, Santen T (2006) Multilateral security
requirements analysis for preserving privacy in ubiquitous envi-
ronments. In: Berendt B, Menasalvas E (eds) Proceedings of
workshop on ubiquitous knowledge discovery for users
(UKDU’06) [Online]. Available:http://www.vasarely.wiwi.
hu-berlin.de/UKDU06/Proceedings/UKDU06-proceedings.pdf

40. Gürses S, Jahnke JH, Obry C, Onabajo A, Santen T, Price M
(2005) Eliciting confidentiality requirements in practice. In:
CASCON ’05: Proceedings of the 2005 conference of the centre
for advanced studies on collaborative research. IBM Press, pp
101–116

41. Onabajo A, Weber-Jahnke J (2008) Stratified modeling and
analysis of confidentiality requirements. In: 41st Annual Hawaii
international conference on system sciences

42. Mead N, Hough E, Stehney T (2005) Security quality require-
ments engineering (SQUARE) methodology. Carnegie Mellon
Software Engineering Institute, Technical report CMU/SEI-2005-
TR-009

43. Mead N, Viswanathan V, Padmanabhan D, Raveendran A (2008)
Incorporating security quality requirements engineering
(SQUARE) into standard life-cycle models. Carnegie Mellon
Software Engineering Institute. Technical report CMU/SEI-2008-
TN-006

44. UML Revision Task Force (2006) OMG unified modeling lan-
guage: superstructure. http://www.omg.org/docs/ptc/06-04-02.pdf

45. Sindre G, Opdahl AL (2001) Capturing security requirements by
misuse cases. In: Proceedings of the 14th Norwegian informatics
conference (NIK’2001)

46. Sindre G (2007) Mal-activity diagrams for capturing attacks on
business processes. In: Sawyer P, Paech B, Heymanns P (eds) Pro-
ceedings of REFSQ 2007, ser. LNCS 4542. Springer, pp 355–366

47. Lodderstedt T, Basin DA, Doser J (2002) SecureUML: a UML-
based modeling language for model-driven security. In: Pro-
ceedings of the 5th international conference on the unified
modeling language (UML’02). Springer, London, pp 426–441

48. UML Revision Task Force (2006) OMG object constraint lan-
guage: reference. http://www.omg.org/docs/formal/06-05-01.pdf

49. Jürjens J (2003) Secure systems development with UML.
Springer, New York

50. Bertrand P, Darimont R, Delor E, Massonet P, van Lamsweerde
A (1998) GRAIL/KAOS: an environment for goal drivent
requirements engineering. In: ICSE’98—20th international con-
ference on software engineering

51. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed
requirements acquisition. Sci Comput Program 20(1–2):3–50

52. van Lamsweerde A (2004) Elaborating security requirements by
construction of intentional anti-models. ICSE pp. 148–157

53. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J
(2004) Tropos: an agent-oriented software development meth-
odology. Auton Agent Multi Agent Syst 8(3):203–236

54. Giorgini P, Susi A, Perini A, Mylopoulos J (2005) The tropos
metamodel and its use. Inf J 29:401–408

55. Fuxman A, Liu L, Mylopoulos J, Pistore M, Roveri M, Traverso
P (2004) Specifying and analyzing early requirements in tropos.
Requir Eng J 9(2):132–150

56. Yu ES-K (1996) Modelling strategic relationships for process
reengineering. Ph.D. dissertation, University of Toronto, Toronto

57. Yu ESK (1997) Towards modeling and reasoning support for
early-phase requirements engineering. In: RE ’97: proceedings of
the 3rd IEEE international symposium on requirements engi-
neering. IEEE Computer Society, Washington, DC, p 226

58. Yu ESK, Liu L (2001) Modelling trust for system design using the
i* strategic actors framework. In: Proceedings of the workshop on
deception, fraud, and trust in agent societies held during the
autonomous agents conference. Springer, London, pp 175–194

59. Giorgini P, Mouratidis H, Zannone N (2007) Modelling security
and trust with secure tropos. In: Integrating security and software
engineering: advances and future vision. IDEA

60. Mouratidis H, Giorgini P (2007) Secure tropos: a security-ori-
ented extension of the tropos methodology. Int J Softw Eng
Knowl Eng 17(2):285–309

61. Mouratidis H, Giorgini P (2004) Enhancing secure tropos to
effectively deal with security requirements in the development of
multiagent systems. In: Proceedings of the 1st international
workshop on safety and security inmultiagent systems, SASEMAS

62. Mouratidis H, Giorgini P (2005) Secure tropos: dealing effec-
tively with security requirements in the development of multi-
agent systems. In: Proceedings of the 2nd international workshop
on safety and security in multi-agent systems, SASEMAS, ser.
Computers & Security, vol 24, no.8. Elsevier, pp 614–617

Requirements Eng (2010) 15:7–40 39

123

 Author's personal copy 

http://www.nmayer.eu/publis/Thesis_Mayer_2.0.pdf
http://www.vasarely.wiwi.hu-berlin.de/UKDU06/Proceedings/UKDU06-proceedings.pdf
http://www.vasarely.wiwi.hu-berlin.de/UKDU06/Proceedings/UKDU06-proceedings.pdf
http://www.omg.org/docs/ptc/06-04-02.pdf
http://www.omg.org/docs/formal/06-05-01.pdf


63. Massacci F, Mylopoulos J, Zannone N (2007) Ontologies for
business interaction. Information science reference, ch. An
ontology for secure socio-technical systems pp 188–207

64. Elahi G, Yu E (2007) A goal oriented approach for modeling and
analyzing security trade-offs. University of Toronto, Department
of Computer Science. Technical report

65. Matulevičius R, Mayer N, Mouratidis H, Dubois E, Heymans P,
Genon N (2008) Adapting secure tropos for security risk man-
agement in the early phases of information systems development.
In: CAiSE ’08: proceedings of the 20th international conference
on advanced information systems engineering. Springer, Berlin,
pp 541–555

66. Mayer N, Rifaut A, Dubois E (2005) Towards a risk-based
security requirements engineering framework. In: Proceedings of
the 11th international workshop on requirements engineering:
foundation for software quality (REFSQ’05), in conjunction with
the 17th conference on advanced information systems engineer-
ing (CAiSE’05)

67. Bauer B, Müller JP, Odell J (2001) Agent UML: a formalism for
specifying multiagent software systems. Int J Softw Eng Knowl
Eng 11(3):207–230

68. Giorgini P, Manson G, Mouratidis H (2004) Using security attack
scenarios to analyse security during information systems design.
In: The 6th international conference on enterprise information
systems. Porto

69. Liu L, Yu E, Mylopoulos J (2003) Security and privacy
requirements analysis within a social setting. In: Proceedings of
11th IEEE requirements engineering conference. IEEE Press, pp
151–161

70. Abiteboul S, Hull R, Vianu V (1995) Foundations of databases.
Addison-Wesley, New York

71. Giorgini P, Massacci F, Mylopoulos J, Zannone N (2005) St-tool:
a case tool for security requirements engineering. In: RE-05.
IEEEP, pp 451–452

72. Massacci F, Zannone N (2006) Detecting conflicts between
functional and security requirements with secure tropos: John
rusnak and the allied irish bank

73. Leone N, Pfeifer G, Faber W, Eiter T, Gottlob G, Perri S, Scar-
cello F (2006) The DLV system for knowledge representation and
reasoning. ACM Trans Comput Logic 7(3):499–562

74. He Q, Antòn AI (2003) A framework for modeling privacy
requirements in role engineering. In: International workshop on
requirements engineering for software quality (REFSQ 2003)

75. CERIAS Technical Report (1999) Policy framework for inter-
preting risk in ecommerce security

76. Hauser J, Clausing D (1988) The house of quality. Harv Bus Rev
32(5)

77. Jackson M (2001) Problem frames. Analyzing and structuring
software development problems. Addison-Wesley, New York

78. Lin L, Nuseibeh B, Ince D, Jackson M (2004) Using abuse frames
to bound the scope of security problems. In: Proceedings of 11th
IEEE international requirements engineering conference (RE’04).
pp 354–355

79. Hatebur D, Heisel M, Schmidt H (2006) Security engineering
using problem frames. In: Müller G (ed) Proceedings of the
international conference on emerging trends in information and
communication security (ETRICS’06), ser. LNCS 3995.
Springer, pp 238–253

80. Hatebur D, Heisel M, Schmidt H, (2007) A pattern system for
security requirements engineering. In: Proceedings of the

international conference on availability, reliability and security
(AReS). IEEE Computer Society, pp 356–365

81. Hatebur D, Heisel M, Schmidt H (2007) A security engineering
process based on patterns. In: Proceedings of the international
workshop on secure systems methodologies using patterns
(SPatterns). IEEE Computer Society, pp 734–738

82. Hatebur D, Heisel M, Schmidt H (2008) Analysis and compo-
nent-based realization of security requirements. In: Proceedings
of the international conference on availability, reliability and
security (AReS). IEEE Computer Society, pp 195–203

83. Schmidt H (2009) Pattern-based confidentiality-preserving
refinement. In: Engineering secure software and systems—first
international symposium (ESSoS), ser. LNCS, vol 5429.
Springer, Berlin, pp 43–59

84. Schmidt H, Wentzlaff I (2006) Preserving software quality
characteristics from requirements analysis to architectural design.
In: Proceedings of the European workshop on software archi-
tectures (EWSA), vol 4344/2006. Springer, Berlin, pp 189–203

85. Haley CB, Moffett JD, Laney R, Nuseibeh B (2006) A framework
for security requirements engineering. In: SESS ’06: proceedings
of the 2006 international workshop on Software engineering for
secure systems. ACM Press, New York, pp 35–42

86. Haley C, Laney R, Moffett J, Nuseibeh B (2004) Picking battles:
the impact of trust assumptions on the elaboration of security
requirements. In: Jensen CD, Poslad S, Dimitrakos T (eds)
iTrust’04, pp 347–354

87. Haley CB, Moffett JD, Laney R, Nuseibeh B (2005) Arguing
security: validating security requirements using structured argu-
mentation. In: Proceedings of the 3rd symposium on require-
ments engineering for information security (SREIS’05). Paris

88. Braber F, Hogganvik I, Lund MS, Stølen K, and Vraalsen F
(2007) Model-based security analysis in seven steps—a guided
tour to the CORAS method. BT Technol J 25(1):101–117

89. Dahl HEI, Hogganvik I, Stølen K (2007) Structured semantics for
the CORAS security risk modelling language. SINTEF infor-
mation and communication technology Technical report STF07
A970

90. Asnar Y, Giorgini P, Massacci F, Zannone N (2007) From trust to
dependability through risk analysis. In: Proceedings of the
international conference on availability, reliability and security
(AReS). IEEE Computer Society, pp 19–26

91. Asnar Y, Giorgini P, Mylopoulos J (2006) Risk modelling and
reasoning in goal models. University of Trento. Technical report
DIT-06-008

92. Keblawi F, Sullivan D (2006) Applying the common criteria in
systems engineering. IEEE Secur Priv 4(2):50–55

93. Mellado D, Fernandez-Medina E, Piattini M (2006) Applying a
security requirements engineering process. In: ESORICS’06

94. Mellado D, Fernander-Medina E, Piattini M (2006) A comparison
of the common criteria with proposals of information systems
security requirements. In: First international conference on
availability, reliability, and security (ARES’06). pp 654–661

95. Booch G, Rumbaugh J, Jacobson I (1999) The Unified Software
Development Process. Addison-Wesley, New York

96. Sindre G, Firesmith DG, Opdahl AL (2003) A reuse-based
approach to determining security requirements. In: Ninth inter-
national workshop on requirements engineering (REFSQ’03).
http://www.citeseer.ist.psu.edu/580371.html

97. MAP (2005) Metodologı̀a de anàlisis y gestiòn de riesgos de los
sistemas de informaciòn (magerit-v 2)

40 Requirements Eng (2010) 15:7–40

123

 Author's personal copy 

http://www.citeseer.ist.psu.edu/580371.html

	A comparison of security requirements engineering methods
	Abstract
	Introduction
	Conceptual framework
	A system is a machine in its environment
	Stakeholder views
	System requirements
	Specification and domain knowledge
	Threat analysis concepts and the concretization process

	Related work
	Multilateral approaches
	Multilateral security requirements analysis (MSRA)
	Security quality requirements engineering methodology (SQUARE)

	UML-based approaches
	Misuse cases
	SecureUML
	UMLsec

	Goal-oriented approaches
	Keep all objectives satisfied (KAOS) with intentional anti-models
	Secure i* and Secure Tropos
	Goal-based requirements analysis method (GBRAM)

	Problem frame-based approaches
	Abuse frames
	Security engineering process using patterns (SEPP)
	Security requirements engineering framework (SREF)

	Risk analysis-based approaches
	CORAS
	Tropos goal-risk framework
	Model-based information system security risk management (ISSRM)

	Common criteria-based approaches
	Common Criteria (CC)
	Security requirements engineering process (SREP)

	Comparison of security requirements engineering methods
	Conclusion and perspectives
	Acknowledgments
	References


