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Abstract

Several researchers during the last decade have encountered the problem
of how to infer business relationships between Autonomous Systems (ASes)
of the Internet. Since the Internet has a decentralized structure and pub-
lic data sources containing inter-domain routing information have not been
created for topology inference, there are no accurate and comprehensive
maps of the Internet readily accessible. This challenge has inspired sev-
eral approaches for inferring business relationships between ASes from BGP
routing data. This article presents one implementation of the most recent
and most promising approach for relationship inference on AS-level. The
algorithm used has been improved in terms performance and quality of the
sanitizing process. Unlike recent projects, not a only snapshot of the topol-
ogy of the Internet has been inferred but a comprehensive map showing the
Internet over the last decade. The correctness of this implementation and
the inferred data set is examined by comparison with a business relationship
graph and a validation data set provided by related work.

Keywords: Internet Topology, Business Relationship, Autonomous
Systems, Internet Measurement

1. Introduction

The Internet has become an indispensable foundation for today’s busi-
ness and society. Not only has it changed the business model of formerly
existing companies but also built the basis for establishing completely new
business models. Some of the biggest and most valuable companies started
as pure Internet firms (e.g., Facebook or Google) [1]. The Internet, as a
global critical infrastructure, needs to be studied with respect to robustness
and resilience to disasters and attacks [2], power structure [3], information
flow, censorship, and topological connectivity of individual businesses [4] or
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services such as cloud computing [5]. All these investigations need a solid
understanding and mapping of the Internet topology as a vast and complex
routing but also business infrastructure [6]. By convention the Internet ar-
chitecture is often studied on two abstraction levels [7]. On one level, there
are so called domains of which each usually hosts a number of routers. The
internal routing environment of those domains is organized by an internal
routing protocol, the so called Interior Gateway Protocol (IGP). The second
abstraction level of this routing structure describes the inter-domain rout-
ing environment. Each domain is an autonomous unit in the overall routing
context and is therefore called Autonomous System (AS), referred to by
a uniquely identifying number – the Autonomous System Number (ASN).
This second abstraction level – the AS-level – describes how the local rout-
ing domains are connected with each other. It is organized by the Border
Gateway Protocol (BGP) [8].

Due to the decentralized organization of the Internet’s architecture, there
is no accurate map of it accessible. Different research projects have made
efforts to map the topology of the Internet. A representation at the AS-
level in form of a graph where nodes are ASes and edges are routing links
between ASes has been the preferred choice. The main sources for inferring
those maps are BGP routing data and traceroute-based measurements [9].
However, this data was never primarily meant to be used for inferring an
AS-level mapping of the Internet. The design of BGP was never driven by
the mapping idea. Instead it is supposed to serve as a scalable framework
to enable communication between AS domains without revealing domain-
internal information [10]. Thus, the inference of Internet topologies at the
AS-level is somewhat challenging given these inherent limitations.

Moreover, the vast amounts of existing ASes are operated by different
administrative entities such as Internet Service Providers (ISPs), companies
and universities. These parties have different (often confidential) commercial
interests which, in turn, influence and determine the AS-level topology and
traffic patterns. Participating ASes engage in certain business relationships
with each other. Business relationships between two ASes can be broadly
categorized into two main types: customer-to-provider (c2p) and peer-to-
peer (p2p) [11]. For more than a decade several research projects have
focused on inferring business relationships between ASes. The result of these
efforts are different algorithms for business relationship inference on AS-
level. Some projects have made their data publicly available (e.g., CAIDA
and UCLA). However, the available business-annotated or directed AS-level
graphs are usually significantly smaller than undirected AS-level graphs in
terms of the number of ASes and links [12, 13].
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The goal of this article is to infer a comprehensive directed graph of the
AS-level Internet. This topology shall map business relations between ASes
accurately. For this purpose the most promising approach for inferring AS-
level business relationships is presented and implemented. The implemented
script is applied on a collection of BGP data from a time range of nearly
13 years. Subsequently, the inferred graph is validated and examined for its
correctness by drawing a comparison to a data set provided by UCLA [13].
Moreover, an evaluation is presented by using a validation data set by [14].

This article is structured as follows. The first section introduced moti-
vation and research goal. The second part deals with the tools and metrics
used for this article. Subsequently, background and theoretical concepts in
the context of policy-based routing are explained in detail. This is followed
by a summary of related work in the field of business relationship inference of
the AS-level Internet. The fourth section focuses on the implementation of
the selected approach. Details about the data sources and the implemented
algorithm are presented. Then, the results acquired using the implemented
script are examined. A validation is presented at the end of this part. The
final section includes a discussion of the results including advantages and
limitations of the used approach.

2. Preliminaries: Tools and Methods

In this section the tools and methodologies are provided. At first, an
insight into the used tools for gathering, inferring as well as analyzing the
data is presented. Afterwards, metrics important for evaluating the inference
algorithm are presented.

2.1. Perl Programming Language

This article mainly concentrates on the implementation of an algorithm
for inferring business relationships between ASes. Any implementations for
this article have been made using Perl. Perl is an acronym for Practical
Extraction and Report Language. Perl is a simple language that has been
designed for powerful text manipulation and has been developed by Larry
Wall [15]. Despite Perl being considered a scripting language, it shares
many characteristics with system programming languages (e.g., C), like the
handling of various I/O aspects and process control [16].

2.2. Zebra Dump Parser

The raw source files available or BGP paths are stored in a binary format.
For later processing, the files needed to be parsed in order to extract the
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Figure 1: Transit degree computed by using AS paths. The node degrees of A and B are
both 3. B has a transit degree of 3. A has a transit degree of 2 because it has not been
seen announcing D’s prefixes to any neighbors. Nodes with a transit degree of zero are
stubs [14].

AS paths. For this purpose, the freely available script zebra-dump-parser.pl
written by Marco d’Itri has been adopted. The script is written in Perl and
is capable of parsing the Routing Information Base (RIB) files, like the files
provided by RouteViews [17]. The script processes each AS path of each
route. The last and second-last AS in the paths are recorded as the origin of
the route and its ”neighbor” networks (prepends are ignored). The output
is a list of AS paths.

2.3. Graph Metrics

For the implemented algorithm, two basic graph metrics were significant:
node degree and transit degree. The node degree is the total number of
neighbors an AS has. The transit degree, on the other hand, is the number
of unique neighbors that appear on either side of an AS in adjacent links.

Figure 1 illustrates how Luckie et al. compute the transit degree of an AS.
The transit degree is used to create a sorted list of ASes for later inference.
ASes with a transit degree of zero are called stubs and are considered to build
the lowest level in the AS hierarchy. The transit degree is a more accurate
metric for the rank of an AS than the node degree because it reduces ordering
errors caused by stub networks with a large peering visibility. A BGP peer
that shows a view over the Internet from its perspective is called vantage
point (VP). These stubs provide a vantage point or peer with many vantage
points.

2.4. Confusion Matrix Evaluation

In order to evaluate the predictive quality of the implemented algorithm,
a confusion matrix can be used. Figure 2 shows the four possible outcomes
of a two-case classification scenario. True Positives and True Negatives
represent correct classifications. In contrast, False Positives occur when
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Figure 2: Confusion Matrix: It shows the possible outcomes of a two-class prediction.
True Positives and True Negatives represent correct predictions. False Positives and False
Negatives are erroneous predictions (see [18]).

incorrectly class ”Yes” was predicted but the actual class is ”No”. False
Negatives occur when class ”No” was predicted but the true class is ”Yes”.
For validation of the inferred results two metrics were used: True Positive
Rate (TPR or Recall) and Predictive Positive Rate (PPV or Precision):

• Recall = TPR = TruePositives
NumberofActualPositives = TP

TP+FN

• Precision = PPV = TruePositives
NumberofPredictedPositives = TP

TP+FP .

TPR describes the proportion of actual positive values that have been
correctly predicted as positive. The PPV, on the other hand, is the propor-
tion of values predicted as positive that are actually positive [18].

In the context of business relationship inference of links between ASes,
each inferred type of relationship can be considered as a two-case scenario
(e.g., a Confusion Matrix for p2p inferences).

3. Background and Related Work

3.1. Border Gateway Protocol (BGP)

A number of ISPs administrate the Internet where each operates a cer-
tain subset of all ASes. Inter-domain communication (i.e., between ASes)
is performed by the so-called Border Gateway Protocol (BGP). It is built
to exchange routing and reachability information between BGP-”speaking”
systems [8]. BGP is specified in several Request For Comments (RFCs) and
its current version 4 (BGP-4) is described in RFC 4721 [19].

BGP is designed to enable systems to exchange network-reachability
information. This information consists of lists of AS paths and can be
translated into a graph of ASes. By that, routing loops can be prohibited
and policy-based routing can be enforced. Initially, BGP-speaking systems
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Figure 3: Inter-AS business relationship types. Short arrows show which information is
shared between ASes (based on [21]).

exchange all routing data. After that only incremental updates are sent.
These updates are not scheduled regularly, and only the optimal routing
path to a network is advertised. Hence, if paths of a router change, the
router only advertises the portion of paths that has changed. The metric
BGP uses to determine the best path bases on an arbitrary unit number
which specifies the degree of preference of a particular link. This degree of
preference is assigned to each link by the network administrator. It can be
influenced by different aspects like stability, speed, delay, or costs [20].

3.2. Policy-based Routing

On an abstract level the Internet consists of ASes and links between
these ASes. However, connectivity between two ASes does not imply reach-
ability itself. A vast number of ISPs is operating individual subsets of all
participating ASes [11]. Each ISP engages in different formal and infor-
mal relationships with other ISPs. These relationships are usually enforced
by certain business agreements which in turn translate into certain routing
constraints. Each of these routing constraints influences the traffic flow [12].
Accordingly, business relationships can be mapped on the links between
ASes. Gao [11] set the groundwork with a business relationship model that
categorizes the types of links between ASes into three distinct categories:
customer-to-provider (c2p), peer-to-peer (p2p) and sibling-to-sibling (s2s).
Figure 3 illustrates the three types of business relationships between ASes.

The first type c2p is the most common one. A link between two ASes is
called c2p if one AS (the customer) is paying the other AS (the provider) for
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Figure 4: AS paths with business relationships. (see [11])

its transit services in order to obtain reachability to ASes the provider can
reach directly and to those the provider can reach through its own providers.
To achieve this, the provider reveals all his known paths to the customer.
The customer will only announce routes of his own customers to its provider.
Routes to other peers and providers, on the other hand, stay unknown to
its provider.

Another important business relationship between two ASes is referred
to as peer-to-peer (p2p). A p2p relationships exists between two ASes if
both ASes obtain access to each others’ customers and their customers.
However, peer and provider routes are confidential and are not revealed to
the peer. Typically, neither of them pays the other for transit services. This
is advantageous for both peers since they would have to pay a provider for
data transit otherwise. Accordingly, this so-called settlement-free peering
is attractive for both parties as neither could convince the other to become
a customer. The third category, sibling-to-sibling (s2s), is rather rare. It
describes the situation when two ASes administratively belong to the same
administrative unit. The announcement of routes between the two ASes are
not restricted. This is normally the case if two ASes belong to the same ISP
[11, 12].

Figure 4 shows examples for all three relationship types within an AS
graph. There exists a c2p relationship between AS5 and AS2. Hence, AS5
will offer its route to AS2 and thereby reachability to AS1 since AS2 has
a p2p relationship to AS1. Furthermore, AS5 reveals to AS7 the routes it
knows through its p2p relationship with AS4. Contrarily, AS5 will reveal
its routes to AS2, however, it will detain all routes it learned through its
p2p relationship with AS4. AS3 and AS4 will typically share all their routes
with each other because of their s2s relationship.
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Figure 5: AS paths with business relationships. Paths (3, 6, 4) and (7, 5, 4, 1) are violating
the valley-free principal (see [12]).

3.3. The Valley-free Model

Based on the aforementioned parameters, Gao [11] defined a valley-free
model of the Internet topology on AS-level. Basically, the valley-free model
assumes there exist only valid paths within the topology. A valid path is a
path where for each AS providing transit services there is at least one AS
paying for its services. In a more formal way this can be captured by two
requirements: Firstly, a p2c link can only be followed by a p2c link or a s2s
link. Secondly, after a p2p there can only appear p2c or s2s links [12, 11].

Figure 5 illustrates examples for both cases of invalid constellations. The
red path (3, 6, 4) represents the first case. It is invalid because AS6 would
transport traffic for AS3 and AS4. However, neither of them is paying
AS6. The blue path (7, 5, 4, 1), on the other hand, violates the second
requirement for a valley-free graph. None of the involved ASes is paying
for AS4’s transit services. Therefore, this path is invalid. The valley-free
model is a common assumption used for most of the published approaches
for business relationship inference on the AS-level (see Section 3.7).

3.4. BGP Data Sources

The two main projects for collecting BGP data are Route Views [17] and
RIPE-RIS [22]. They host so-called collectors which collect BGP data by es-
tablishing peer-to-peer sessions with operational routers within a significant
amount of ASes [9]. Two kinds of files are provided by each collector: RIB
files, which are snapshots of the current RIB, and updates. RIBs are usually
collected in certain intervals, i.e., every two hours for Route Views [17] and
every eight hours for RIPE-RIS [22]. Updates are written in shorter intervals
between 5-15 minutes. The file names contain the file type (rib or update),
the date and time they were written, e.g., rib.20040517.1359.bz2.
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Figure 6: Zebra dump parser output variants.

The RIBs are stored in the Multi-Threaded Routing Toolkit (MRT)
Routing Information Export Format which is described in RFC 6396 [23].
MRT is a binary format and can be translated into ASCII. Route Views [17]
and RIPE-RIS [22] suggest three different tools for that: libbgpdump – a li-
brary written in C, PyBGPdump – a Python library, and zebra-dump-parser
– a script written in Perl (see Section 2.2) [17, 22].

In scope of this article, the zebra-dump-parser has been used. By set-
ting the variable $format the output type can be chosen. Three different
output types are possible: verbose which basically causes an output of all
information contained in the original MRT-file, AS path which produces a
list of AS paths and AS origin which produces a list of the mere origins of
the paths. Figure 6 shows the three output types. For the conducted infer-
ence the second variant has been used. Furthermore, there exists a variable
$ignore v6 routes which if set causes ignoring IPv6 (Internet Protocol
version 6) routes.

A BGP peer that shows a view on the Internet from its own perspective
is called vantage point (VP). The first AS in an AS path (see second column
in Figure 6) shows the VP of the path.

3.5. Clique (Tier-1 ASes)

As of October 2013 there are more than 70,000 ASNs allocated by IANA
to the different RIRs. The sheer size of this number makes it impossible to
establish connections to the entirety of all ASes and gather accurate infor-
mation from all of them. A common assumption has been been prevalent
for quite some time that the Internet can be structured into several tiers.
Roughan et al. [10] state that this is a misconception. However, Oliveira
et al. [9] state that there exists a group of ASes on top of the graph, the
tier-1 ASes. They showed that, what they call the public view, can be seen
fairly completely by those tier-1 ASes over time [9]. Luckie et al. [14] define
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the clique of the AS-level topology as multiple large transit providers form-
ing a peering mesh. Thereby, customers and indirect customers of a tran-
sit provider can reach global connectivity without entering multiple transit
provider relationships.

3.6. Customer Cone

Luckie et al. [14] describe a view on the relationship graph that is called
the customer cone. The customer cone of an AS is the set of all ASes that
can be reached by following its customer links, its customers’ customer links,
and so on. This structure is important for relationship inference in order to
mitigate cycles of p2c links. Moreover, it can be used for further analysis of
the inferred graph of business relationships. For instance, the customer cone
of an AS is a more precise representation of an AS’s size than just its degree.
It reflects the number of ASes that directly or indirectly pay an AS for its
transit services. The bigger an AS’s customer cone, the more important
its role in the Internet. Accordingly, ASes in the Clique have the biggest
customer cones. ASes at the bottom of the hierarchy have no customer cone
which reflects the fact that they have to pay for all of their transit.

3.7. Related Work on Business Relationship Inference

For more than the last decade, research has concentrated on the inference
of business relationships at the AS-level. This section gives an overview
of relevant work in this field. In 2001 Gao [11] was one of the first to
set pioneering groundwork for AS relationship inference. She introduced a
solution which classified three types of business relationships between ASes:
customer-to-provider (c2p), peer-to-peer (p2p) and sibling-to-sibling (s2s).
This solution is based on the assumption that BGP paths are hierarchically
described by the valley-free model. This model assumes that each path
consists of an uphill and a downhill segment. The uphill segment consists
of zero or more c2p links or sibling links. On top there are zero or one p2p
links followed by the downhill segment consisting of zero or more p2c or s2s
links (see Section 3.3). The valley-free model represents typical commercial
relationships that exists in the Internet. For each AS providing transit
services, there is at least one AS paying for its services. In other words,
there is no AS in any AS path that remains unpaid for its transit service.

Gao [11]’s approach intents to maximize the total number of such valley-
free paths. This is done by assuming the AS with the largest node degree
within a path as the top AS. Furthermore, the algorithm assumes that neigh-
boring ASes within an AS path with a similar node degree (i.e., difference
R which is to be fine-tuned) have a p2p relationship. A s2s relationship
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between two ASes of a link is inferred if both ASes provide transit services
for each other. Gao [11] conducted minor validation by using internal infor-
mation obtained from the tier-1 AS of AT&T. Furthermore, for validation of
the inferred s2s relationships she used information from the ARIN WHOIS
service [11].

Xia and Gao [24] published an improved approach based on Gao [11]’s
algorithm. They based their inference on partial ground truth informa-
tion based on commercial agreements between ISPs. The information was
obtained from the BGP community attribute, the instances from AS-SET
object (both to be found in verbose BGP RIB-files) and the Internet Routing
Registry (IRR). This basis served as starting point for the inference process
that was conducted using the valley-free model and Gao [11]’s algorithm.
They validated 6.3% of their inferences and concluded with an accuracy of
their approach of 96.1% for p2c inferences and 89.33% for p2p inferences
[24].

Subramanian et al.[25] mathematically formulated the relationship in-
ference as a combinatorial optimization problem referred to as Type of Re-
lationship (ToR) problem: Given an AS graph derived from BGP routing
data, assign the relationship type (c2p or p2p, ignoring s2s) to each link
such that the total number of valley-free paths is maximized. They specu-
lated that this ToR optimization problem is NP-complete.1 Therefore, they
introduced a heuristic-based solution in order to rank each AS. The ranking
is based on an AS’s apparent distance to the core of the graph assessed from
different VPs. Similar to Gao[11]’s approach, adjacent ASes are compared.
If two ASes have a similar rank, they are assigned a p2p relationship. Other-
wise, a p2c relationship is inferred. Subramanian et al. [25] did not validate
their results.

Di Battista et al. [27] later proved that the ToR optimization problem
is in fact NP-complete. They presented mathematical approximation so-
lutions to the problem. Furthermore, they showed that inference of p2p
relationships under the ToR framework is infeasible. Their solutions only
infer c2p relationships and neglect p2p as well as s2s relationship inference.
This task was left open to future work. Di Battista et al. [27] also provided
no validation of their results.

Dimitropoulos et al. [28] stated that ToR has certain limitations: Ignor-
ing s2s relationships causes proliferation of erroneous inferences. A solu-

1NP stands for non-deterministic polynomial time. A problem is NP-complete if it is
not solvable in polynomial time in any known way [26].
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tion maximizing the number of inferred-to-be-valid paths is not necessarily
correct. Furthermore, in situations when several solutions with the same
amount of valid paths exist, ToR has no means to deterministically select
the most realistic solution. Dimitropoulos et al. [28] approached this prob-
lem by manually establishing a dictionary to map syntactically different
organization names that belong to one single organization. Then they as-
signed edges as s2s of ASes that belong to the same organization according
to the dictionary. Organizational information was gathered from the IRR.
They state that this data is not always up-to-date but reasonably accurate
since these information change less frequently than BGP routing informa-
tion. Thereafter, all s2s edges were removed. Furthermore, Dimitropoulos
et al. [28] achieved improvement of c2p inference integrity by enhancing
the ToR maximization objective by introducing a second objective. Edges
gather a bonus bi if edge i is directed from an AS with smaller degree to
an AS with higher degree. The bonus equals the weight function f(d−i , d

+
i )

which is a function of the degrees of adjacent ASes to edge i. Value f is
high if the difference between d−i and d+i is high. Otherwise, it is small and,
accordingly, the value of bi is small. The objectives of the optimization prob-
lem are: (O1) Maximize the number of valid paths in P and (O2) maximize
the sum

∑
i∈E bi (i.e., the number of c2p inferences where the node degree

of the provider is larger than the customer).
Dimitropoulos et al. [28]’s approach combined the strength of Subrama-

nian et al. [25], Di Battista et al. [27] and Gao [11] since it uses the valley
free model, it attempts to maximize the number of valid paths, and uses
the knowledge of AS degree gradients to assign edge directions. Moreover, a
Boolean variable for assigning whether a link’s direction has to be changed
or remains the same was introduced. Furthermore, the multi-objective opti-
mization problem is simplified to the well-known MAX-2-SAT. MAX-2-SAT
had been used the first time for AS relationship inference by Wang et al.
[29]. MAX-2-SAT is a special type of boolean algebra problem, i.e., 2-
satisfiability: the problem of determining whether a collection of two-valued
(Boolean or binary) variables with constraints on pairs of variables can be
assigned values satisfying all the constraints. They provided validation of
3,724 AS relationships and concluded correct inference of their algorithm
for 96.5% of c2p links, 82.8% of p2p links and 90.3% of sibling links. The
validation represented 9.7% of the public view and was the most compre-
hensive validation at that time. The disadvantage of this approach is that
MAX-2-SAT’s complexity is NP-hard and, thus, inference for recent graphs
does not complete in practical time durations [28, 14, 29].
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Dimitropoulos et al. [28]’s approach had formerly been in use by CAIDA
[12] in order to provide freely accessible AS relationship data. It has been
replaced by Luckie et al. [14]’s approach which, also will be used in the scope
of this article. It will be presented in more detail in the following section
(see Section 4).

Apart from CAIDA, another project that periodically provides AS re-
lationship is UCLA. Zhang et al. [30] describe the method that is used by
UCLA for automatically deriving an undirected AS graph from BGP data,
i.e., an AS-level graph that does not contain business relationships between
ASes. Oliveira et al. [9]’s paper, on the other hand, describes the inference
of business relationships at the AS level. Oliveira et al. [9] conjecture that
there’s a group of ASes on the top of the AS-level hierarchy – tier-1 ASes.
The common conception is that these tier-1 ASes do not pay for each other’s
transit services. Hence, they build a peering clique. A clique of a graph is a
subset of the graph that forms a complete subgraph, i.e., each node of the
clique has a direct link to every other member of the clique [31]. Oliveira
et al. [9] assume that the tier-1 ASes are publicly available. Their algorithm
starts from this clique and infers all links that are observable from the clique
to be p2c. The remaining links are inferred to be p2p [9]. However, since
the number of region-specific c2p relationships that can only be seen below
regional ISPs is increasing, Oliveira et al.’s algorithm infers too many p2p
relationships [14].

Gregori et al. [21] proposed an approach similar to the one of Oliveira
et al. [9]. Briefly, it uses the life time of a path as a metric to infer the
business relationships between ASes. The algorithm identifies all possible
business relationships and uses the time parameter to actually infer the
applicable relationship [21]. Neither of the two latter articles provided vali-
dation of the proposed approaches [21, 9].

4. Relationship Inference

This section elaborates on the actual relationship inference. At first,
light will be shed on the data sources used. Furthermore, one of the latest
algorithms for business relationship inference on AS-level of the Internet will
be presented. The algorithm in use was provided by Luckie et al. [14] in a
manuscript of the finally published article.

4.1. Data Sources

In Section 3.4 the main sources for BGP data, RouteViews and RIPE-
RIS, were described. In order to restrict runtime of the scripts only Route-
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Views has been used for gathering BGP data. At the time of data collection,
RouteViews provided BGP data from 13 different collectors. The RIB files
can be accessed either via FTP or HTTP access. For this implementation
the HTTP archive has been used.

The files contain a time stamp representing their creation date. However,
hour and minute when the files were written vary from hour to hour, day
to day and collector to collector. Therefore, the script first assembled a list
of file names from every 2nd day of each month of every year from every
collector. Luckie et al. [14] used a time window of the first five days of every
collector for one month to extract a set of AS paths. They used the 5-day
window in order to see even unstable paths which represent backup paths.
For this article only one file per month instead five were download because
of the fairly big number of files that had to be processed. In total, 972 RIB
files were downloaded by the script. The average size of each compressed file
was ≈ 16MByte or ≈ 300MByte uncompressed. It turned out that even by
limiting to only one file per month the derived AS set grew fairly big due to
the fact that a time range of almost 13 years has been considered.

Furthermore, the Internet Assigned Numbers Authority (IANA) pro-
vides an up-to-date list of ASN assignments of the available ASN pool. It
provides information about which number blocks are assigned to which RIR
[32]. Within the scope of this article the list was used for sanitizing of AS
paths.

Moreover, a list of known Internet Exchange Points (IXPs) [33] in com-
bination with an AS name list [34] is used to assemble a comprehensive list
of IXPs. Like IANA’s list this set of ASes serves the sanitizing process.

4.2. Algorithm and Implementation

As mentioned earlier, several approaches base their inference algorithms
on the valley-free concept initially introduced by Gao [11]. In contrast,
Luckie et al. [14] developed a new method for business relationship inference.
Instead of the valley-free model their method is based on three assumptions:

1. There is a clique of large transit providers at the top of the AS-level
hierarchy. These large transit providers build a p2p mesh so that
their customers and indirect customers can reach global connectivity
without having multiple transit providers.

2. Most customers enter into a transit agreement to be globally reachable.
Besides clique ASes, every AS requires a transit provider to reach
global connectivity. Accordingly, if an AS A becomes a customer of
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provider B, the provider announces routes to A to all its providers or to
its peers if B is part of the clique. However, backup and region-specific
relationships are exceptions to this assumption.

3. Cycles of p2c links (e.g., an AS graph consisting of A, B, C where A
is customer of B, B is customer of C and C is customer of A) do not
exist [14].

Luckie et al.’s approach [14] does not try to maximize valley-free (hier-
archical) paths. Therefore, inference can be conducted using path triplets
(e.g., A − B − C − D → (A − B − C), (B − C − D)). Triplets contain all
necessary constraint information, and processing of triplets is less complex
than processing of whole AS paths considering CPU time and memory usage
[14].

4.2.1. Sanitizing

Before BGP paths can be processed, they have to be sanitized in certain
aspects. Luckie et al. [14] divide the sanitizing of paths in four parts. At
first, they discard paths containing artifacts such as:

• Loops indicating path poisoning, i.e., in a path (A-B-C-B-D), AS B
would prevent the path from being chosen by a non-adjacent upstream
AS C since B appears twice in the path.

• ASes that are reserved for private use and ASes within unallocated
ASN space should not appear in AS paths. [32]’s list [32] is used as a
reference to discard such paths.

• IXPs are considered as artifact ASes since the actual relationships
exist between the ASes participating in the exchange. Luckie et al.
[14] manually assembled a list of 25 IXP ASes. IXP ASes from this
list are removed from valid paths.

Moreover, removal of path padding is applied for paths containing the
same ASN twice, e.g., (A − B − B − C − D) → (A − B − C − D).

In a second step, the algorithm creates a sorted list of all ASes. Order
criteria are transit degree, node degree, and ASN to break ties. Thirdly,
they infer the clique based on calculating the maximal clique using the
Bron/Kerbosch algorithm [35]. The relationship between each two members
of the clique is set to p2p. Finally, after inferring the clique, paths are
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discarded where any two clique members in a path are separated by a non-
clique AS. This condition indicates a poisoned path since ASes in the clique
by definition do not pay for transit.

For our article, Luckie et al.’s approach [14] has been adjusted in sev-
eral aspects. In addition to the aforementioned artifacts, multiple-origin
ASes (MOAS) have been considered as such. For a path starting with a
MOAS set, clear identification of the announcing BGP peer is ambiguous
[36]. Multi-origin paths have the form ({A,B}, C, D). In addition, all ASes
in ASDOT format were converted to ASPLAIN format. ASPLAIN and
ASDOT are two different textual representations of ASNs. ASPLAIN is a
syntax scheme representing ASes using decimal integer notation (e.g., ASN
of value 66847 would be represented by the string ”66847”). In contrast,
ASDOT uses two integer values joined by a period character. The integer
value on the left is a multiplier of 216. The integer on the right side of the
period character represents a decimal value. The value of the right integer
added the product of multiplier and 216 returns the ASPLAIN format (e.g.,
ASPLAIN representation 1.1311 is converted by 1 ∗ 216 + 1311 = 66847).

Instead of manually assembling a list of IXPs to exclude from AS paths,
a list of known IXPs by the research project of Augustin et al. [37] has been
used. Their data is publicly available ([33]). The list does not contain the
ASNs of the IXPs. However, Potaroo [34] provides a list of AS names. By
mapping the IXPs’ names to their ASNs, a list of 63 ASNs could be derived
and used for the sanitizing process.

Finally, the 21 clique ASes provided in the manuscript of Luckie et al.
[14] have been used as the clique. This is tenable because of the small
number of clique ASes and the stable appearance of these ASes in the clique
over time.

4.2.2. Inference

This subsection presents the actual inference steps. Notation: In the
following, a p2p relationship between two ASes X and Y will be represented
by X − Y, a p2c relationship by X > Y and a c2p relationship by X <
Y. In the relationship X > Y the provider will be represented by X. Y
represents the customer, accordingly. A link with no inferred relationship
will be referred to by X ? Y.

Using the set of triplets, the actual relationship inference is conducted in
seven steps which will be presented in detail in the following. One important
data structure is the so called customer cone (see Section 3.4). The customer
cone of an AS is the transitive closure of its customer relations, i.e., the set of
all of its customers, and its customers’ customers, and so on. The customer
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Figure 7: Example for inferring providers, customers, and peers from sanitized BGP
paths. The sorted order of ASes is assembled following transit degree, node degree, and
ASN (adapted from [14]).

cone is important when it comes to preventing cycles of p2c links: Whenever
a c2p between two ASes is inferred, the customer and all members of the
customers’ customer cone are added to the provider’s customer cone. A c2p
relationship will not be inferred if the provider is already in the customer
cone of the potential customer to avoid a p2c cycle.

In order to improve runtime and memory usage of this algorithm, an
inverted representation of this structure has been implemented for this ar-
ticle, i.e., a provider cone. The provider cone of an AS represents the set of
its providers and its providers’ providers. Accordingly, the condition testing
is done the other way around, i.e., a c2p will not be inferred if the po-
tential customer is already in the provider cone of the potential provider.
Hence, the provider cone delivers all necessary information. Access time
for membership testing is linear with moderate memory usage. Only using
a customer cone would mean a trade-off between access time and memory
usage.

For the remaining part of this section, Figure 7 is used to illustrate each
step of inference.

Step 1 − c2p relationships top-down: . In the first step of the algorithm,
each AS Z of the sorted list of ASes will be visited top down (i.e., ordered
by transit degree, node degree and ASN to break ties). Clique members will
be skipped since they have by definition no providers. The algorithm infers
Y > Z if a triplet of the form X − Y ? Z or X > Y ? Z exists. The former is
the case at this point if X and Y are both clique members. The latter can be
observed if Y has been visited in a previous iteration of this step. Visiting
ASes by descending rank is important in order to avoid false inferences due
to router misconfigurations in one direction of a p2p relationship. This could
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be the case if an AS leaks provider or peer routes to a peer. In that case,
a c2p relationship will be inferred if the provider or peer is observed to be
closer than the customer to at least one VP in at least one triplet. This
method is based on the assumption that each AS enters a relationship with
a provider to achieve global connectivity, i.e., at least one VP should observe
the provider announcing the customer’s routes.

Step 1 infers 90% of all c2p relationships [14]. This step, at first, con-
siders AS 9002 since it is the first non-clique AS in the sorted list. The first
triplet of path 1 is used for inference as it matches the pattern X − Y ? Z
(see Figure 7).

Step 2 − c2p relationships from VPs announcing no provider routes:. In
the second step, a c2p relationship is inferred from VPs not announcing any
provider. This step is based on either of the following two assumptions: (1)
Partial VPs export only customer routes (i.e., the vantage has a p2p session
with the collector) or (2) the VP has a default route to a provider. Hence,
it exports customer and peer routes to the collector (i.e., p2c relationship
with a collector). The algorithm infers Y > Z for each path X ? Y ? Z where
X is a partial VP2 and Z is stub (i.e., the transit degree of Z is 0).

Path 9 and AS 15169 being a partial VP leads to the inference 6432 >
36040 in this step (Figure 7).

Step 3 − c2p relationships to smaller degree providers:. In the third step, c2p
relationships are inferred for links in the very unlikely case that a provider
has a smaller transit degree than the potential customer. If a triplet W >
X ? Y is observed where the transit degree of X is smaller than the transit
degree of Y and the triplet (W, X, Y) is a suffix (i.e., at least one path ends
with (W, X, Y)), this step infers X > Y. In this case, also, Y > Z will be
inferred where X > Y ? Z is observed [14]. Step 3 infers 721 > 27065 using
path 5 and 27065 > 2629 using path 6 (Figure 7).

Step 4 − Customers for provider-less ASes:. Step one and three require
a provider for c2p relationship inference. Step four assigns relationships
to links with provider-less ASes. Provider-less ASes can occur within some
regional and research networks. At first, the provider cone is used for quickly
assembling the subset of ASes which do not have a provider, yet. The
algorithm visits each neighbor W of each provider-less AS X top-down (along
descending rank of W). If a triplet (W, X, Y) is observed, the algorithm

2A partial VP provides routes to fewer than 2.5% of all ASes [14].
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infers W − X and X > Y because W has not been observed announcing
X to providers or peers before. In this case, furthermore, Y > Z will be
inferred where X > Y > Z is observed [14]. The provider-less AS 11164 in
Figure 7 and path 8 lead to the inference of 9002 − 11164 as well as 11164
> 2152. Further, 2152 > 7377 is inferred.

Step 5 − c2p relationships for stub-clique links:. Stub ASes are extremely
unlikely to achieve a clique AS’s peering requirements. Therefore, ASes with
direct links to a clique member are inferred to be a customer. In this step, X
> Y will be inferred for an unknown relationship where X is a clique member
and Y is a stub. Step 5 uses path 2 to infer 1239 > 13395 (see Figure 7).

Step 6 − Collapse adjacent links with no relationships:. Step six looks for
triplets with unresolved links X ? Y ? Z and attempts to infer Y > Z. For
each triplet X ? Y < P where P is different from Z, the algorithm infers X
< Y. If such a triplet X ? Y < P does not exist and there exists a triplet
Q ? Y ? X, no inference is made because this would imply Y > X and the
original triplet would resolve to X < Y and Y > Z. However, only one side
of the original triplet can be resolved with confidence. If neither X ? Y < P
nor Q ? Y ? X can be observed, the algorithm infers X > Y [14].

In this step the relationship 15169 > 6432 is resolved (Figure 7).

Step 7 − p2p relationships for all other links:. The last step simply infers
p2p for all remaining unresolved links. Looking at the example in Figure 7,
this step infers 1239 > 15169.

5. Results

In this section, the results of the relationship inference are elaborated.
Initially, data provided by UCLA was used as a reference, later also vali-
dation data provided by Luckie et al. [14]. In the following, characteristics
of the inferred data set will be illustrated. At first, a comparison regard-
ing relationships between the two data sets will be drawn. Secondly, in
order to get an insight into the differences and similarities, single AS nodes
will be examined. UCLA provides a monthly updated data set of observed
AS links and inferred business relationships on their website (UCLA [13]).
According to Luckie et al. [14], this algorithm performed closest to their
algorithm during validation. Although UCLA provides monthly dumps, the
data only grew in the number of new links tagged as ”unknown” during our
data collection.
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Finally, a comparison of our data with the validation data set provided
by Luckie et al. [14] will be presented.

5.1. AS Business Relations

The outcome of our parsing, sanitizing and inferring of 972 MRT files
from 13 Route Views archives (2001-2013) is a total of 300,903 unique links.
224,577 of them were inferred to be c2p and 76,326 p2p relationships. This
leads to a ratio of 74,63% of c2p relationships and 25,37% p2p relationships.

As a reference for comparison, the UCLA data set of August 2013 was
used. UCLA’s data is stored as a table of three columns. Column one and
two contain ASNs where each row represents a link between two ASes. The
third column contains the labels for the inferred business relationship, i.e.,
c2p, p2c, p2p or unknown. Each link in UCLA’s data set is stored in a
forward and backward representation. In an AS graph, the link between
two ASes A and B is represented by one edge which has a certain direction.
However, the relationship type can be read by either using A or B as a
starting point, i.e., A is a customer of B or B is a provider of A, respectively.
Accordingly, the link would be stored as (A, B, c2p) and as (B, A, p2c). The
UCLA data set contains 368,048 links, i.e., 184,024 unique links of which
each is stored in a forward and a backward representation. This is important
while comparing the inferred data set and UCLA’s data set. The advantage
of this forward and backward representation is that similarities between the
two data sets can be analyzed precisely.

The examined UCLA data set was created on 06/09/2013 covering the
month of August. 128,462 (34,90%) of their observed AS links are labeled
as unknown. Regarding c2p and p2p it shows almost the same ratio as
our inferred data set, however, only half as many of the relationships were
inferred by UCLA (see Figure 8).

To determine the exact differences between the two data sets, it is help-
ful to consider the entire set of links (forward and backward representation).
Thus, every edge between two nodes A, B occurs twice, i.e., as A-B and B-A.
Since links can be matched independently from their stored direction, dif-
ferently inferred relationships can be compared precisely. The left pie chart
in Figure 9 shows four categories. Category ”same” stands for every link
that occurs in both data sets and has the same relationship in both. The
subset of links, which occur in both data sets but with different inferred re-
lationships, is represented by ”differs”. Links that occur only in the inferred
data set but do not appear in UCLA’s data set belong to ”additional”. On
the opposite, links that occur in UCLA’s data set but do not appear in the
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Figure 8: Number of unique links by relationship types of our inferred data set versus
UCLA’s data of August 2013. The inferred data set shows a ratio of 75% c2p relationships
and 25% p2p relationships. UCLA’s data set contains only half as many inferred business
relationships. The ratio of 74% c2p to 26% p2p links, however, is similar to the inferred
data set. Around one third of the UCLA links are labeled as unknown.

inferred data set are categorized ”missing”. In total 699,136 links or 349,568
unique links, respectively, can be observed by combining both data sets.

Figure 9 shows that 39% (i.e., differs+same) of all observed links occur in
both data sets. Approximately two thirds of these carry the same business
relationship, and for one third the two data sets show a different business
relationship. The remaining 14% of all observed links are missing in the in-
ferred data set. They account for 97,330 links. The pie on the right in Figure
9 gives an insight into how the missing links are labeled in the UCLA data
set. It shows that the major part (≈ 75%) of the missing links are labeled
to be unknown. Broken down to unique links, only 3,458 customer-provider
relationships and 10,230 peer-to-peer relationships inferred by UCLA are
missing in our inferred data set. Together these account for only 3.9% of
all observed unique links. Since most of the missing links are not labeled
with any business relationship, these links do not contribute to the Inter-
net graph of business relationships. The links of the small set of UCLA’s
business relationships that do not appear in our data set could be missing
for several reasons, e.g., discarded paths during sanitizing or different BGP
path sources that were used, and most likely the usage of other sources by
UCLA.

Links which are labeled differently in the two data sets are illustrated in
more detail in Figure 10. 95,810 (≈ 14%) of all observed links carry different
relationship labels in the two data sets. Again, a major part (≈ 61%) of
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Figure 9: Comparison of relationships by UCLA and inferred data set – focus on undis-
covered relationships. In total 699,136 links or 349,568 unique links, respectively, were
observed by combining both data sets. Approximately 75% of links which are missing in
our inferred data set are labeled as unknown.

these links are labeled to be unknown in the UCLA data set. Considering
unique links, 10,534 peer-to-peer relationships and 8,117 customer provider
relationships are allocated by UCLA. This accounts for ≈ 5.3% of all ob-
served links.

The unknown links do not provide any hint on the correctness of the
inferred data set. However, the small number of relationships that have
been inferred differently supports the observation of Luckie et al. [14]. They
observed by validation a performance of UCLA’s algorithm close to their
own algorithm. According to their investigation, UCLA’s algorithm tends
to produce errors by inferring c2p where the true business relationship is
p2p. In such cases, the customer often has a larger degree than the provider.
UCLA’s approach assumes that over time every c2p relationship can be seen
from a tier-1 AS. Any other observed link not visible from tier-1 is assigned
p2p. However, reasons such as traffic engineering or selective announcements
are causing a growing number of region-specific c2p relationships visible only
below the provider AS. This leads to too many p2p inferences in the UCLA
data set. Luckie et al. [14] take these effects for example in inference step 6
(see Section 4.2) of their algorithm into account.

In order to ensure the inferred data set has similar properties and there-
fore Luckie et al.’s algorithm has been implemented correctly, Figure 11
sheds light on the fraction 5.3% of differently inferred relationships. The pie
chart shows that the main part (≈ 57%) of these links are those assigned
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Figure 10: Comparison of relationships by UCLA and inferred data set – focus on mis-
takenly inferred by UCLA. In total, 699,136 links or 349,568 unique links, respectively,
were observed by combining both data sets. Approximately 61% of links which where
inferred differently are labeled to be unknown by UCLA. Around 17% were inferred to
have a customer-provider relationship, and the remaining 21% are labeled p2p by UCLA.

Figure 11: The figure shows the proportion of differently inferred business relationships
between UCLA’s and our inferred data set. The major part of these links are assigned
c2p in the inferred data set and p2p by UCLA. The number of links with c2p (inferred
data set) vs. p2c (UCLA) is negligible.
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p2p by UCLA and c2p in the inferred data set. Furthermore, Luckie et al.
mentioned that the number of occurrences where c2p was inferred by UCLA
and the correct relationship was p2c is insignificant [14]. Only 806 of 349,568
unique relationships showed this combination.

5.2. AS Nodes

The presented implementation produced a total number of 56,048 unique
ASNs. UCLA’s data set of August 2013 contained 46,455 unique ASNs (see
Table 1). In order to find reasons for links that were not seen in the inferred
data set but in UCLA’s data set, the assignment of discovered ASNs was
checked. Therefore, the set of ASNs of the two data sets were compared with
IANA’s list of AS assignments (downloaded 16/09/2013) [32]. It turned out
that the AS numbers of 439 ASes of UCLA’s set were situated in number
ranges that were not assigned to any RIR. Accordingly, paths containing
these ASNs would have correctly been discarded and not considered for
business relationship inference by the implemented algorithm. Looking at
what these unassigned ASNs are reserved for (see Figure 12), it turns out
that over 90% of these are reserved for private use.

Table 1: Number of assigned ASNs by Regional Internet Registry

Regional Internet Registry Inferred data set UCLA

Unassigned ASNs 0 439
Assigned by AFRINIC 810 694
Assigned by APNIC 7,007 5,700
Assigned by ARIN 20,367 16,336
Assigned by LACNIC 3,217 2,894
Assigned by RIPE NCC 24,647 20,391

Total number of ASes 56,048 46,455

Another intuition is that some paths would have been discarded if they
contained ASNs which are actually IXPs since this condition was set in the
implemented algorithm. Therefore, the assembled list of IXPs (see Section
4) was compared with all assigned ASes of UCLA’s data set. Table 2 shows
that 37 ASes are IXPs and would have been discarded by the implemented
algorithm. Added to the number of unassigned ASNs, this sums up to a total
number of 476 invalid ASNs in the UCLA data set. Accordingly, business
relationships in UCLA’s set where these ASNs participate should be invalid
and could explain missing links (see 9) in the inferred data set. Thus, a
total number of 2,322 UCLA relationships is invalid. Table 3 shows that of
all UCLA links that are missing in the inferred data set 14% of c2p, 6% of
p2c and 11% of p2p relationships can be explained by the usage of invalid
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Figure 12: Unassigned ASNs within the UCLA data set. Over 90% of these are reserved
for private use.

ASNs for inference. However, these are rather small proportions and do not
explain the major part of missing links. Therefore, it can be concluded that
the major part of missing links can be ascribed to the usage of additional
BGP file sources by UCLA (e.g., Abilene [38]).

Table 2: Number of IXP and non-IXP ASes in UCLA data set

Regional Internet Registry Number of IXPs No IXP

AS TRANS 1 0
Assigned by AFRINIC 2 692
Assigned by APNIC 4 5,696
Assigned by ARIN 4 16,332
Assigned by LACNIC 11 2,883
Assigned by RIPE NCC 15 20,376

Total number ASes 37 45,979

In order to determine the large number of additional links that occur in
the inferred data set but not in UCLA’s data set, a look at the VPs used
could give some explanation. According to Oliveira et al. [9], UCLA used
BGP data from ≈ 400 ASes provided by Route Views, RIPE-RIS [22], and
Abilene [38]. In contrast, our inferred data set contains 595 VPs (see Table
4). Unfortunately, the exact ASNs of those ASes are not available. Hence,
a direct mapping of VP ASes that do not occur in UCLA’s data set to links
that are categorized as additional is not possible.

However, the much higher number of used VPs clearly substantiates the
observed difference in additionally inferred business relationships between
the inferred data set and UCLA’s data, at least to a certain extent.
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Table 3: Number of missing relations with unassigned or IXP ASNs in UCLA data set

Description c2p p2c p2p unknown

AS TRANS 96 14 25 151
Reserved 6 2 1 16
Reserved by the IANA 2 0 2 4
Reserved for Private Use 224 76 160 722
Reserved for use in documentation and sample code 3 0 4 8
Unallocated 4 0 1 9
IXP ASN 159 114 178 341

Sum of invalid relations 494 206 371 1251
Proportion of ”missing” relations 14% 6% 11% 36%

Table 4: Number of vantage point and non-vantage-point ASes within in the inferred data
set.

Vantage point Number of ASNs

No 55,453
Yes 595

Sum 56,048

5.3. Validation

In the manuscript of Luckie et al. [14] it was somewhat unclear what
time range for a single business relation graph inference had been used.
Eventually, they provide monthly inference of a 5 day interval. Assembling
validation data for business relationship inferences is like the inference itself
not a trivial task. The validation data provided by Luckie et al. is based
on corrected, previously inferred data sets from January 2010 and 2011
that had been inferred by using the algorithm of Dimitropoulos et al. [28].
As mentioned earlier, this algorithm inferred too many p2p relationships.
Luckie et al. [14] corrected the data set by using three sources: directly
reported data, RPSL data, and data from communities.

Directly reported data has been collected by feedback from network
providers through CAIDA’s website or via direct e-mail exchange. Further-
more, they collected data from routing policies which are stored by network
operators in public databases. This data is stored in the Routing Policy
Specification Language (RPSL). The routing policy of an AS is stored in
the aut-num record which lists the export and import rules for each neigh-
bor AS. Luckie et al. [14] used the RIPE WHOIS database, one of the largest
sources for RPSL data, to derive their validation data.

The third source used by Luckie et al. in order to assemble the validation
data set involves community attributes included in route announcements.
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These are additional attributes that can be carried through several ASes
propagating the route. However, the policy of an AS could also include
removing this information from routed packets. These community attributes
are often used by ASes to publicly document the meaning of their routing
policies. Dictionaries with the meaning of individual community attributes
are often provided on the websites of network operators and IRR databases.

Luckie et al. [14] mention that even these apparently reliable sources
of business relationship information agree only on 99% of the links in the
validation data set. To construct the validation data set, the sources were
combined in the following precedence order: Directly reported data using
CAIDA’s website, RPSL data, BGP community data and directly reported
information via e-mail exchange where e-mail exchange information has the
highest priority. In conclusion, their validation data contains 41,604 rela-
tionships (16,248 p2p and 23,356 p2c) [14].

In order to prove correctness of our inferred data set and implementation,
the inferred relationships have been directly compared to the relationships
in the validation data set and grouped by relationship (see Table 5).

Table 5: Mapping of relationships between inferred data set and validation data set.

Inferred True Number of
relationship relationship relationships

c2p 224,341
c2p p2c 39
c2p p2p 197
p2c p2c 29,933
p2c p2p 528
p2p p2c 156
p2p p2p 9,699

From Table 5, a confusion matrix has been derived for both types of
relationships – p2p and p2c relationships (see Figure 13). These matrices
build the basis to calculate PPV and TPR:

• Recall = TPR = TruePositives
ActualPositives = TP

TP+FN

• Precision = PPV = TruePositives
PredictedPositives = TP

TP+FP .

Table 6 shows TPR and PPV for p2p and p2c inferences of Luckie et al.’s
validation and other algorithms they validated (i.e., [11, 28, 24]). It also
includes TPR and PPV values of the inferred data set. The results show that
both implementations performed close to each other. The most significant
difference can be observed in the TPR of p2p inferences. The TPR of the
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Figure 13: Confusion matrices for p2c and p2p inferences of the inferred data set and the
validation data set provided by CAIDA.

inferred data set is 6.3% lower than Luckie et al.’s validation value. A brief
examination of what causes the difference showed that the main cause were
too many p2c relationships where the true relationship is p2p. This accounts
for ≈ 75% of the false negative values in the inferred data set.

Table 6: TPRs and PPVs of different relationship inference algorithms (data taken from
[14]). TPR and PPV of the inferred data set shows similar performance as Luckie et al.’s
own implementation.

Algorithm c2p p2p
PPV TPR PPV TPR

Inferred data set 98.4% 99.4% 98.4% 93.0%
Luckie et al. 99.6% 99.3% 98.7% 99.3%
UCLA 99.0% 94.7% 91.7% 98.8%
Xia+Gao 91.3% 98.6% 96.6% 81.1%
Gao 82.9% 99.8% 99.5% 62.5%

Furthermore, Table 6 also shows the high level at which most algorithms
perform. Improvements in TPR and PPV values can only be achieved within
percentage fractions. Gao’s algorithm [11] achieves the highest PPV for p2p
relationships since it makes the fewest number of p2p inferences compared
to other algorithms. However, that comes at the price of many more c2p
inferences than actually exist [14].

In summary, this section indicates the correctness of the implementation
of the used algorithm. A comparison has been drawn between the UCLA
data set of business relationships and the inferred data set. Firstly, the
results show that the inferred data set misses only a small fraction of the
relevant links and their business relationships of UCLA’s data. Furthermore,
that subset could be partly explained by the fact that UCLA used ASes for
their inference that would be considered invalid by the implemented algo-
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rithm. However, the major part of missing relevant links can be ascribed
to the use of additional BGP sources. Secondly, the analysis of differently
inferred relationships shows that the major part of differently inferred re-
lationships resolved to c2p when UCLA inferred p2p. This result conforms
with the observations of Luckie et al. [14] and, thus, can be interpreted as
evidence for a correct implementation.

6. Discussion

For the last decade researchers focused on the creation of Internet topolo-
gies at the AS level. Due to the common conception that participants have
to pay each other for transit services different scientific peer groups tried to
infer these business relationships and assemble a complete directed graph of
the AS-level Internet. In the previous sections, the most promising algorithm
in terms of correctness (by Luckie et al.) has been explicated. The result
of this work is a directed graph representing the Internet on AS-level over
the last 13 years. It has been shown that the properties of the inferred data
set give strong evidence that the algorithm has been implemented correctly.
Comparison with a validation data set assembled by Luckie et al. [14] has
yielded correctness of the inferred data set and the implementation. Links
belonging to categories ”differs” and ”missing” deliver most information for
an interpretation of the inferred data set.

Category ”missing”. It has been shown that missing links (14%) that are
actually allocated business relationships, account for only 3.9% of all ob-
served links. The major part of missing links is labeled to be unknown by
UCLA. Those missing links can partly be explained by unassigned ASes
and IXP ASes which were not filtered by the UCLA algorithm (see Table
4). However, the majority of missing links can be ascribed to the use of ad-
ditional BGP table sources. UCLA not only used Route Views as a source
for MRT files but also RIPE-RIS and Abilene. In conclusion, by using ad-
ditional source files the inferred topology of the Internet could be extended
even further.

Category ”differs”. Among differently labeled links those which are un-
known by UCLA (≈ 61%) give no information for interpretation. However,
those inferred differently confirm the observations Luckie et al. [14] made.
Supposedly mistakenly inferred p2p by UCLA and inferred to be c2p in our
data set account for 57% of differently inferred relationships. Obviously, the
number of c2p links inferred by UCLA which are labeled p2p in the inferred
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data set is with a ratio of 39% of differently inferred links also fairly high.
In addition to the effects of traffic engineering and selective announcements,
the much smaller time range and additional sources used by UCLA’s explain
this observation.

UCLA inferred MRT files from a time range of ”only” ≈ 7 months.
For our inferred data set, a time range of nearly 13 years of BGP routing
files has been covered. Overall 972 RIB files of 13 different Route Views
archives were collected. The higher number of used VPs (≈ 400 UCLA vs.
595 our inferred data set) reflects the difference. This clearly comes with
consequences while comparing the two data sets.

Validation. Comparing TPR and PPV for p2p and p2c inferences of Luckie
et al. [14]’s validation results and the inferred data set has shown that,
besides the TPR of p2p inferences, all values differ by less than 1%. The
difference of ≈ 6% in TPR of p2p inferences were mainly caused by too
many p2c inferences of relationships that are actually p2p relationships.
One explanation for this result could be that the validation data reflect a
recent state of the true business relationships on AS-level. According to
Luckie et al. their validation data reach back to 2010. The inferred data
set, however, used BGP data sources reaching back to 2001. Therefore, it
is likely that some ASes occurred as a customer rather than a peer in an
earlier state. Accordingly, they would appear in different positions in BGP
RIB files in the past than nowadays, for instance if they had been announced
as a customer in an older BGP file. However, the task to investigate this
observation further will be left to future work. Despite the difference in TPR
of p2p inferences, the close performance of the presented implementation and
Luckie et al.’s data confirm correct inference and implementation.

Projects such as UCLA and CAIDA have so far only provided snapshots
that only capture short time ranges reaching from a few days to a few
months. The presented inference certainly provides a better perspective of
the entirety of the Internet topology by comprising a view over the past 13
years. For the implementation of Luckie et al.’s algorithm the set of IXP has
been extended by using data provided by Augustin [33]. Furthermore, ASes
in ASDOT format have been converted to ASPLAIN. Paths containing ASes
in ASDOT format could, therefore, been used for relationship inference.
Another advantageous aspect of the presented implementation is the usage
of a provider cone instead of a customer cone for this implementation. It
caused linear runtime and moderate memory usage during the inference
process.
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6.1. Limitations

While a long time range gives a comprehensive view of the AS-level
topology, the drawbacks of this setting should be considered. In the following
subsection the major shortcomings will be presented.

Reassignment of ASNs. One question that came up during examination of
the inferred data set is: Are ASNs generally reused and does this have
an influence on inferring business relationships? The intuition behind this
question is the following: If an ASN X is assigned to a certain AS A at
an earlier point of time and to another AS B later, the two distinct ASes
would be considered as one domain. Each AS would have certain links
and business relationships to other ASes and by that a certain position in
the Internet topology. Accordingly, since those ASes are identified by their
ASN they would be considered as one AS. As a consequence, the two sets of
links to X would be merged. Since the two ASes could appear on different
hierarchy levels, the inferred relationships involving this ASN would not
reflect a picture of reality.

In order to answer this question, the assignment and advertisement of
ASNs has to be illuminated. On top of this system stands the Internet
Assigned Numbers Authority (IANA) which administrates the pool of ASNs.
IANA does not assign ASNs directly to ISPs but allocates ASNs to Regional
Internet Registries (RIRs). The RIRs, on the other hand, assign ASNs to
different ISPs which, in turn, advertise the ASNs in routing tables [32].

In order to generate projections of ASN consumption, Huston [8] ex-
plored ASNs in more detail. He stated that under current conditions, costs
for maintaining an ASN allocation do not exist. Once an allocation of ASNs
by IANA to an RIR is made, it remains in this state. There is no incentive
for RIRs to return ASNs [8] Huston [8] observed that the growth rates in
the number of unadvertised ASes (i.e., never announced in a BGP file) is
slightly lower than the growth rate of the number of advertised ASes over
time. The ASN pool is being consumed in a numerical sequence, i.e., more
recently allocated ASNs are higher than older ones. Looking at this distri-
bution of ASNs in blocks of 256, it turns out that older blocks (i.e., blocks
with lower ASNs) contain higher proportions of unadvertised AS than more
recent blocks. Figure 14 shows the breakdown of each block of 256 AS
numbers, looking at how many numbers from each of these smaller pools is
currently advertised, how many are not advertised, and how many are in
the RIR pre-allocation pools [8].

The age distribution of unadvertised ASNs (see Figure 15) helps to un-
derstand the meaning of this observation. It appears that the probability of
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Figure 14: ASN Status by Block. The figure shows the breakdown of each block of 256
AS numbers, looking at how many numbers from each of these smaller pools is currently
advertised, how much are not advertised, and how much are in RIR pre-allocation pools
(cited from [8]).

an ASN being visible in the routing table is directly associated to the time
that has passed since allocation. Furthermore, the figure shows a peak in
the number of unadvertised ASNs that have the latest allocation date. It
shows that there’s a three-month gap between the allocation of an ASN and
its advertisement in the BGP routing tables. Considering all the foregoing
observations, it can be concluded that an ASN which is no longer needed
does not get returned to the pool of unallocated ASNs for later reuse. In-
stead, it is set to a latent state where the AS is still considered allocated but
unadvertised [8]. This leads to the conclusion that in the chain of IANA –
RIR – ISP ASNs are generally not recycled and reused.

Stable versus unstable paths?. The presented algorithm explicitly uses un-
stable and stable paths for inference. Dimitropoulos et al. [28], in contrast,
used heuristics which evaluate whether or not a path occurs in all 15 sets
of BGP tables which are divided by 8-hour intervals. A path is considered
unstable if it does not occur in each of the sets and stable if it does. Unsta-
ble paths are considered to be caused by misconfigurations [28]. However,
Luckie et al. [14] argue that backup links are more likely to be included
if all AS paths are used, and discarding of normally stable paths due to
temporary peering disputes is prevented [14].

On the other hand, Mahajan et al. [39] found that misconfiguration
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Figure 15: Proportion of unadvertised ASes by RIR Allocation Date [8].

of routers is an issue. 200-1,200 BGP table entries are affected each day
[39]. Dimitropoulos et al. [28] developed the algorithm which was formerly
used by CAIDA for business relationship inference. In their paper they
presented a heuristic to account for misconfiguration in router paths during
the sanitizing phase. They collected routing data from 15 different BGP
table instances. By deriving the persistence function from these 15 sets,
it turned out that the majority of paths appears in most of the 15 sets.
However, a significant number of paths appeared in only a subset of the 15
sets. Consequently, they used only stable paths for inference and observed
only little loss of information. The set of stable paths was just 12.49%
smaller. The observed reduction in number of links (4.34% less) and ASes
(1.87% less) was rather insignificant.

Luckie et al. [14] address misconfiguration by a heuristic used in their
algorithm. They minimize false c2p inferences by looking at the distance
of an AS to a VP. This heuristic accounts for the problem of ASes leaking
provider or peer routes to peers. It is based on the intuition that, in order to
become globally reachable, each AS enters a provider relationship. Accord-
ingly, at least one VP should see the provider announcing the customer’s
routes.

6.2. Outlook on Further Research

Relationship inference for the AS-level Internet has reached its limits of
accuracy due to more and more sophisticated approaches and the fact that
there is no 100% accurate ground-truth of the AS-level topology. However, it
has been shown that it is possible to achieve a more comprehensive AS-level
map by using extensive BGP sources. The implemented approach focused on
simple business relationships (p2c and p2p). However, actual relationships
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between ASes are often more complex. Further research could be conducted
to infer relationships such as sibling-to-sibling or other hybrid relationships.

Another starting point for future research could be the measure for rank-
ing AS nodes. Luckie et al. [14] already used a measure called transit degree
instead of the rather simple node degree. However, there exists a fair amount
of more sophisticated topological metrics that could potentially be used to
rank AS nodes [2][40][4][5].

7. Conclusion

The Internet, as a global critical infrastructure, needs to be studied with
respect to robustness and resilience as well as power structure and informa-
tion flows. All of these important investigations need a solid understanding
and mapping of the Internet topology as a vast and complex routing topol-
ogy but also business infrastructure. Since the Internet has a decentralized
structure, there are no accurate and comprehensive maps of the Internet
readily accessible. This article presents one implementation of the most
recent and most promising approach for relationship inference on the AS
level. The algorithm has been improved in terms performance and quality
of the sanitizing process. Unlike recent projects, not a only snapshot of
the topology of the Internet has been inferred but a comprehensive map
showing the Internet over the last decade. The correctness of this imple-
mentation and the inferred data set was examined by comparison with a
business relationship graph and a validation data set.
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